Page references followed by f denote figures; those followed by t denote tables.

Α	Alexa Fluor 488 dextran 3000, 544	removing antibody-conjugated cDNA from
Acousto-optical tunable filter (AOTF), 477, 481	Alkaline lysis isolation of BAC DNA from small-scale cultures	tissue, 250 restriction enzyme digestion of cDNA from
aCSF for hippocampus (recipe), 506	(protocol), 103–105	antibody, 251
ACSF for two-photon imaging (recipe), 592	materials, 103-104	second-strand cDNA synthesis, 250-251
Action potentials, calcium dynamics and, 508, 510, 513–515	method, 104	recipes, 252-253
Adeno-associated virus (AAV)	recipes, 104–105	troubleshooting, 251–252
AAV-G-CaMP13, 513	preparation of plasmid DNA by (protocol),	Antisense RNA amplification for target assessment
construction and packaging of herpes simplex	81 – 84	of total mRNA from a single cell (protocol), 200–211
virus/adeno-associated virus	materials, 81 method, 82	discussion, 210–211
(HSV/AAV) hybrid amplicon	recipes, 83–84	materials, 200–201
vectors (protocol), 441-445, 442t,	Alkaline lysis solution I (recipe), 83, 104	method, 201-208, 202f, 207f, 209f
443f	Alkaline lysis solution II (recipe), 83, 105	clean up aRNA with Ambion Megclear Kit
discussion, 444–445	Alkaline lysis solution III (recipe), 83, 105	205–206
materials, 441–442	Alkaline transfer buffer (recipe), 132	binding RNA to column, 205
method, 442–444, 442t, 443f cotransfection of packaging-defective	Allen Institute for Brain Science, 121	concentration of RNA by ethanol
HSV-1 helper DNA and vector	Alternative splicing events, detection of, 311	precipitation, 205–206
DNA, 442–443, 442t, 443f	Amacrine cells, 31	elute RNA from column, 205 wash RNA bound to column, 205
harvesting packaged vectors, 443-444	Ambion MEGAscript T7 In Vitro Transcription	clean up with MinElute Kit, 203–204
titration of amplicon stocks, 444	(IVT) Kit, aRNA synthesis using, 204–205	DNA binding to column, 203–204
Cre-dependent reporter, 406	Ambion Megclear Kit, clean up of aRNA with,	elute DNA bound to column, 204
integration of genome into human	205–206	wash DNA bound to column, 204
chromosome 19, 441	binding RNA to column, 205	PCR analysis of cDNA, 208–209
optogenetics and, 530–531	concentration of RNA by ethanol precipitation,	round 1, 201–206, 202f
stable producer cell lines for adeno-associated	205-206	aRNA synthesis using Ambion
virus (AAV) assembly (protocol), 427–431, 429f–430f	elute RNA from column, 205	MEGAscript T7 In Vitro Transcription (IVT) Kit, 204–205
materials, 427–428	wash RNA bound to column, 205 American Type Culture Collection (ATCC), 64	clean up aRNA with Ambion Megclear
method, 428–430, 429f–430f	Amidine, 356t	Kit, 205–206
generation of stable packaging lines,	Amino acids	clean up dsDNA with MinElute Kit,
428-429	in cell culture media, 19	203-204
generation of stable producer clones,	essential, 19	first-strand cDNA synthesis, 201–203
430	Amphotropic viruses, 338	second-strand cDNA synthesis, 203
screening clones for rep and/or cap	Ampicillin (100 mg/mL stock solution) recipe, 68t	round 2, 202f, 206–207, 207f
DNA, 429–430, 430 <i>f</i>	Amplicon vectors, construction and packaging of	first-strand cDNA synthesis, 206 second-strand cDNA synthesis,
selection procedure, 429f recipes, 431	herpes simplex virus/adeno-	206–207
troubleshooting, 430	associated virus (HSV/AAV) hybrid, 441–445, 442t, 443f	round 3, 207-208
Aerosols, avoiding generation of, 62	Amplification buffer $(10\times)$ (recipe), 92–93	first-strand cDNA synthesis, 207-208
Affymetrix microarrays	Amplification buffer for HCR (recipe), 232	second-strand cDNA synthesis, 208
processing data, 292-293	AMPure XP beads, 316–318	recipe, 211
tips on hybridizing, washing, and scanning,	Anesthesia	troubleshooting, 209–210 Arabinose-induced excision of selectable marker,
285-290	of rats and mice, 370, 535, 594, 597, 604	114
materials, 285–286	recovering the animal, 601	Aseptic technique. See Sterile technique
method, 286–290 Agar or agarose containing media (recipes), 87, 102	of tadpoles, 548, 549	Aspirating fluids with sterile technique (protocol),
Agarose gel electrophoresis	Annealing buffer (5×) (recipe), 336	11-12
denaturation and electrophoresis of RNA with	Antarctic phosphatase, dephosphorylation with, 391 Antibiotics	materials, 11
formaldehde (protocol), 212–215	in cell culture media, 20	method, 11–12
gel purification of amplified cDNA, 307-308,	for selection of plasmid-carrying strains, 68t, 69	Astrocytes piggyBac transposon-mediated cellular
308f	Antibody. See also Immunopanning	transgenesis by in utero
in generation and analysis of lentivirus	coupling antibody to Dynabeads, 154	electroporation, 374f, 375
expressing a 2A peptide-linked	for fusion protein localization analysis, 361	purification and culture of, 35-49
bicistronic fluorescent construct	oligonucleotide conjugation to, 248	prospective isolation of astrocytes, 36, 36f
protocol, 386–387, 387f, 390–391 northern blots: capillary transfer of RNA from	restriction enzyme digestion of cDNA from, 251	purification of rat and mouse astrocytes by
agarose gels and filter hybridization	Antibody-positioned RNA amplification (APRA), identification of RNA cargoes by	immunopanning (protocol),
using standard stringency	(protocol), 246–253	38–49, 41f brain dissection, 42–43
conditions (protocol), 216–223	discussion, 252	dissociation of cells, 43–44
protocol, 124–127	materials, 246–248	materials, 38–40
materials, 124-125, 125t	methods, 248-251	method, 40–47, 41f
method, 125-126	APRA reaction, 249-250, 249f	modifications for mouse immunopan-
recipes, 126–127	conjugation of oligonucleotide	ning, 46–47
Albumin annua (maina) 573 574	to antibody, 248	panning, 45–46
Albumin-agarose (recipe), 573–574	preparation of cells for APRA, 248	preparation of panning dishes, 40-41

Astrocytes (Continued)	considerations for choosing a mouse line,	transgenic mice, 579-580
preparation of solutions and panning	121-122	Bright-field microscopy, 450
dishes, 41–42	generation of BAC mice, 118-119, 119f	B-27 supplement, 23
recipes, 47–49	GENSAT website, 122	Buffered HBSS for APRA (recipe), 252
standard preparations and their limitations,	ordering mouse lines, 122	Buffer L1 (recipe), 152
35–36 Auromino 460	homologous recombination using BACs	Buffer L2 (recipe), 152
Auromine, 460 Autoclaving, 17, 63, 67	(protocol), 106–116, 109f–110f materials, 106–108	Buffer L3 (recipe), 152 Bulk electroporation of retinal ganglion cells in liv
Autoradiography, 219, 219f, 263, 263f, 301, 302f,	method, 108–114, 109f–110f	Xenopus tadpoles (protocol),
303, 304f, 305, 306f	analysis of putative recombinant BACs,	558–562
303, 3011, 303, 3001	113–114	discussion, 560–561, 561f
	arabinose-induced excision of the	materials, 558–559
В	selectable marker, 114	method, 559-560, 560f
Bacteria	assembly and preparation of the	recipe, 562
classification, 61	ECFP-Kan cassette, 108–112,	Bump-hole calmodulin/M13 pairs, 513
culture media, 64	109f-110f	Buprenorphine, 537, 594, 597
disposal of infectious waste, 63	electroporation of the ECFP-Kan insert	
growth and maintenance, 64	into electrocompetent cells, 113	
obtaining, 63-64	preparation of electrocompetent cells,	C
phenotypic drift, 64	112–113	C
protocols	recipes, 115–116	Ca ²⁺ , chelation of, 176
freezing bacteria for long-term storage,	troubleshooting, 114–115	CAG promoter, in lentiviral vectors, 404–408
78–80	isolation of BAC DNA from small-scale	Calcium channels, 510
discussion, 79–80	cultures, 103–105 materials, 103–104	Calcium chloride, transformation of competent <i>E.</i>
materials, 78–79 methods, 79	method, 104	coli using (protocol), 85–88 Calcium indicators. See Genetically encoded cal-
reviving a frozen culture, 79	recipes, 104–105	cium indicators (GECIs)
making media for bacterial culture, 66–69	working with BACs (protocol), 100–102	Calcium phosphate transfection, 407, 428
antibiotics, 68t, 69	materials, 100	Calf intestinal alkaline phosphatase (CIP), 261
liquid medium, 67	method, 101	Calibrated slides, 459
materials, 66–67	recipes, 101–102	Camera
method, 67-69	Bandeira simplifolica lectin I (BSL-I), 22, 29, 45	digital scanned laser light sheet fluorescence
plates of solid medium (pour plates),	Barcode, 313, 316-319, 321, 324, 326-327	microscopy (DSLM), 479, 485-48
67-69	Barres, Ben, 2	dynamic range, 486
tubes of solid medium (slants), 69	BDNF (brain-derived neurotrophic factor), 23	cAMP (cyclic AMP), 23
measurement of bacterial growth by	BDNF stock (50 μ g/mL) (recipe), 32	Cannulation, 534–539, 537f, 598f, 599, 601, 604
spectrophotometry, 75–77, 76f	bFGF (basic fibroblast growth factor), 23	cap gene, AAV, 427–430, 444
calculation of generation time, 77	Bimolecular fluorescence complementation (BiFC)	Capillary transfer of RNA from agarose gels and
discussion, 76–77	assay, 489	filter hybridization using standard
materials, 75 method, 75–76	Binding buffer (2×) (recipe), 322 Binding buffer for mobility shift access (recipe), 238	stringency conditions (protocol), 216–223
normal growth in liquid culture, 76f	Binding buffer for mobility shift assays (recipe), 238 Bioconductor, 324, 328, 329, 330	Carbocyanine dyes, 553
obtaining isolated colonies of bacteria, 70–	Biosafety cabinet	Carprofen, 594, 597
72, 71f	classes of, 13–15, 15t	Carriers, for RNA precipitation, 180, 181f
discussion, 72	working sterilely in (protocol), 13–15, 15t	Cation-conducting channelrhodopsins (ChRs),
materials, 70	discussion, 14–15	527t, 529–531, 594
methods, 71-72, 71f	materials, 13	CCD. See Charge-coupled device
streaking agar plates, 71-72, 71f	method, 13-14	cDNA. See also cDNA library
streaking and stabbing slants using	Biosafety hood. See Biosafety cabinet	in antibody-positioned RNA amplification
isolated colonies, 72	Biosafety Level 2 (BL2), 14	(APRA) protocol, 250–252
transferring isolated colonies to plates, 72	Biosafety Level 3 (BL3), 61	gel purification of amplified cDNA, 307–308,
Petroff-Hausser counting chamber use,	Biosafety Level 4 (BL4), 61	308f
73–74, 74f	Bleaching, 461. See also Photobleaching	microarray slide hybridization using
example calculation, 74	Blocking buffer for microarrays (recipe), 279	fluorescently labeled cDNA
materials, 73 method, 73–74, 74f	Blunting of DNA ends, 162 Bottenstein-Sato supplement (SATO), 23	(protocol), 274–279 materials, 274–275
preparation and transformation of compe-	Bowtie, 329	method, 275–279, 276f–278f
tent <i>E. coli</i> using calcium chloride,	Brain. See also Neurons	blocking slides, 275–276, 276f
85–88	piggyBac transposon-mediated cellular	hybridization of microarray slides,
materials, 85	transgenesis in mammalian	276–279, 277f–278f
method, 86	forebrain by in utero	recipes, 279
recipes, 87–88	electroporation, 374f, 375	PCR amplification in preparation of small RNA
preparation of plasmid DNA by alkaline	two-photon imaging of microglia in mouse	libraries for high-throughput
lysis with sodium dodecyl sulfate:	cortex in vivo, 583-593	sequencing protocol, 307
minipreparation, 81–84	Brainbow mice, generating and imaging multicolor,	preparation of fluorescent-dye-labeled cDNA
materials, 81	575-582	from RNA for microarray
method, 82	Brainbow strategies, 577–578, 577t	hybridization (protocol), 269–273
recipes, 83–84	color-assisted circuit tracing, 578	discussion, 272–273
setting up for working with, 62	colors, 578	materials, 269–270
storage, 65, 78–80	generation of <i>Brainbow</i> transgenes, 578–579	method, 270–272 coupling reaction and purification, 271–
working rules, 62–63 Bacterial artificial chromosomes (BACs)	elements for optimized expression, 579 FRT site, 579	272
GENSAT database of engineered mouse strains,	lox sites, 579	purification of cDNA, 271
117–122	promoter, 578	reverse transcription reaction, 270–27
advantages of BACs to label genetically	subcellular localization signals, 579	troubleshooting, 272
defined cell types, 119–120, 120f	XFPs, 579	RACE (rapid amplification of cDNA ends), 33
application of reporter mice to neuro-	overview of approach, 575–577, 576f–577f	synthesis from RNA in aRNA amplification
imaging studies, 120–122, 121f	pros and cons of <i>Brainbow</i> imaging, 580–581	procedure, 200–209

DNA library	single cell/cellular subregion-targeted pho-	planning ChIP experiments, 144
data processing for RNA-Seq, 323-331	totransfection, 376-380, 378f-379f	schematic outline, 144f
classification of changes and associated	transfection of mammalian cells with	protocols
biology, 330	fluorescent protein fusions,	basic ChIP, 153–157
experimental design, 324–328	358–363	ChIP DNA purification, 155–156
library construction, 325–327	infection with short hairpin RNA (shRNA)	coupling antibody to Dynabeads, 154
quantity of starting material, 324–325	retroviruses, 342–343	immunoprecipitation, 155
library construction, 325–327 amplification, 325–326	materials, 342 method, 342–343, 343t	materials, 153–154 method, 154–156
bar coding, 326–327	RNA extraction from tissues, 179	ChIP-chip, 160–166
directionality (strand selection), 326	Cell division, Hayflick limit and, 2	materials, 160–161
normalization, 328	Cell smear, making, 455	method, 161–165
number of reads, 327	Centers for Disease Control and Prevention (CDC)	recipes, 165–166
paired ends, 326	Select Agents Regulations, 63	troubleshooting, 165
priming <i>versus</i> fragmentation, 325	CF Achromat lens, 459	ChIP-quantitative polymerase chain reac-
read length, 326	CF Plan Achromat lens, 459	tion (ChIP-qPCR), 158-159
replicates, 327-328	CF Plan Apochromat lens, 459	materials, 158
mapping, 329	Channelrhodopsins (ChRs), 527t, 529-531, 594	method, 158-159
measuring expression levels and changes	Charge-coupled device (CCD), 467	ChIP-seq, 167–171
in expression, 329	digital scanned laser light sheet fluorescence	materials, 167–168
presentation of data, 330–331	microscopy (DSLM) camera, 479,	method, 168–171
raw reads, 328–329	485–486	recipes, 171
systems for, 323	dynamic range, 486	formaldehyde cross-linking, 147–149
transcript (isoform) assembly, 329	quantum efficiency of, 467	discussion, 148–149
validation, 329–330	viewing stained RNA, 214	materials, 147
high-throughput Illumina strand-specific RNA	Chill See Chromatin immunopresinitation	method, 148
sequencing library preparation	ChIP. See Chromatin immunoprecipitation	recipes, 149 preparation of cross-linked chromatin for
(protocol), 313–322 discussion, 319	ChIP-chip	ChIP, 150–152
different multiplex sequencing strat-	overview, 143–144, 145t protocol, 160–166	materials, 150
egies for GAII and HiSeq2000	materials, 160–161	method, 151
instruments, 321	method, 161–165	recipes, 152
false antisense read derived from	amplification of ChIP DNA and input	sequential ChIP, 145
uracil-minus RNA, 320	DNA, 162–163	ChRs (cation-conducting channelrhodopsins),
purification and size selection on mag-	hybridization, 164	527t, 529–531
netic beads, 320–321	hybridization preparation, 164	Ciliary Neurotrophic factor (10 µg/mL) (recipe), 32
recipes, 322	linker preparation, 162	Ciona intestinalis voltage-sensing phosphatase
strand-specific RNA-Seq vs. conven-	microarray preparation, 164	(Ci-VSP), 518, 521–522
tional RNA-Seq, 319-320, 320f	preparation of fluorescently labeled	Circuit tracing using Brainbow multicolor labeling
using phosphorothioate oligos to pre-	DNA from LM-PCR products, 163	577f, 578
vent PCR amplification of adapter	scanning, 165	CLIP (cross-linking and immunoprecipitation)
dimers, 321	washing, 164–165	identification of RNAs bound by a
materials, 313–314	recipes, 165–166	specific protein, 254–268
method, 314–319, 315f	troubleshooting, 165	discussion, 267
dA-tailing, 316	ChIP-quantitative polymerase chain reaction	materials, 254–256
end-repair, 316 first-strand cDNA synthesis, 315–316	(ChIP-qPCR) overview, 144, 145t	method, 256–267 addition of 454 capture linkers via second
general procedure for using AMPure	protocol, 158–159	PCR step, 266
beads, 318–319	materials, 158	dynabead-antibody complexes, preparation
mix barcoded libraries for multiplex	method, 158–159	of, 259
sequencing, 318	ChIP RIPA buffer (recipe), 156	isolation of RNA from nitrocellulose, 264
PCR enrichment, 317–318, 318f	ChIP-seq	ligation of RNA linkers to 5' ends of tags, 26-
polyA RNA isolation and fragmenta-	overview, 144, 145t	outline of protocol, 257f
tion, 314–315	protocol, 167–171	phosphate removal from RNA ends, 261
second-strand synthesis with dUTP, 316	materials, 167-168	phosphorylation of 5' ends of RNAs with
triple-SPRI purification and size	method, 168-171	PNK, 262
selection, 317, 317f	addition of A to 3' end of ChIP DNA,	purification of PCR-amplified tag sequen-
Y-shape adapter ligation, 316-317	169	ces, 266
mRNA-Seq libraries from poly(A) ⁺ mRNA	end repair, 168	recovering cross-linked RNA, 263-264
for Illumina transcriptome high-	gel purification/size selection, 169-170	removal of DNA contaminants from RNA
throughput sequencing, 310-312	ligation, 169	tags, 265
notes and considerations before	recipes, 171	resolving of RNA-protein cross-linked
beginning, 311	Chlamydomonas reinhardtii, opsins from, 527t,	complexes on gel, 262–263, 263f
overview, 310	529-531	RNA linker addition to 3' end of fragment
tips and troubleshooting, 311–312	Chloramphenicol (20 mg/mL stock solution) recipe,	with RNA ligase, 261–262
adapter ligation, 311 first gel purification, 311–312	68t Chloroform-isoamyl alcohol, 184, 267	RNA tag trimming with micrococcal nuclease, 260–261
optimization, 311	Chloroquine, 339	RNA tag trimming with RNase A and T1
PCR enrichment, 312	Chlorox, 63	mix, 259–260
second gel purification, 311–312	Choline acetyltransferase (ChAT), 106, 109f–110f	RT-PCR amplification of linker-ligated
Cell culture medium for virus production	Chromatic aberration, 473	tags, 265–266
(recipe), 408, 419	Chromatin immunoprecipitation (ChIP)	UV cross-linking of cultured cells, 258–259
Cell cultures. See also Mammalian cell culture	expected results and interpretation of ChIP-	UV cross-linking of tissues, 257–258
gene transfer protocols	based data, 144–145	recipes, 267–268
DNA transfection by electroporation,	overview of methods, 143-144, 145t	CNTF (ciliary neurotrophic factor), 23
364-366	antibody quality, 144	CodeLink slides, 274–277
DNA transfection mediated by lipofection,	direct sequencing of ChIP DNA, 144	CO ₂ incubators, contamination of, 18
355-357, 356t	formaldehyde cross-linking, 143	Collection tube buffer (recipe), 198

Color space, 323, 328 Column chromatography, for RNA	optogenetics and, 531 retrograde delivery of, 406–407	components, 477–480, 479f acousto-optical tunable filter (AOTF),
purification, 179	toxicity of overexpression, 407-408	477, 481
Combinatorial analysis of mRNA expression	Cross-linking, UV	computer, 480–481
patterns in mouse embryos using	of cultured cells, 258–259	control software, 481
hybridization chain reaction	DNA to membrane, 132	detection system, 479, 481–482
(protocol), 224–233	RNA to membrane, 218	illumination/excitation system, 477–478, 481
discussion, 230–232, 231f, 231t	of tissues, 257–258	objective lens, 477–478
materials, 224–225, 226t	Cross-linking buffer (recipe), 149 Cufflinks, 329	secondary observation system, 479–480
method, 225–229, 227f clearing and mounting embryos, 229	Culture medium (AAV) (recipe), 431	specimen-positioning system, 480
image acquisition, 229	Cumate-inducible systems, 490	technical blueprint, 480f
in situ HCR, 225, 227f, 228–229	Cy3 dye, 272–273	temperature control system, 478
recipes, 232–233	Cy5 dye, 272–273	live imaging of embryonic development, 478f
troubleshooting, 229–230, 230f	Cytomegalovirus (CMV) promoter, 336, 489, 555	overview, 476-477, 477f
Complete cell growth medium (recipe), 401	in lentiviral vectors, 407–408	DiI, 553
Condenser, microscope	tet-CMV, 336, 350	DiO, 553
aperture diaphragm, 457f		DI (defective interfering) particles, 418–419
use of, 456	_	Direct immunofluorescence, 460 Disposal of infectious waste, 63
using immersion oil on lens, 457	D	Dissection
Confocal microscopy, 463-470	DABCO (diaminobicyclo-octane), 461	in purification of rat and mouse astrocytes by
advantage of, 465f	DAB labeling, 497, 499	immunopanning (protocol), 42–43
digital scanned laser light sheet fluorescence	Dark-field microscopy, 450	for retinal ganglion cell purification and culture
microscopy (DSLM) compared,	Dark noise, 467	from rodents, 29–30
482-486	dA-tailing, 316	Dithiothreitol (DTT), 177
dynamic range, 486	DC-cholesterol, 356t	Divalent metal ions, RNA degradation caused by,
flaws in, 471	D3cpVenus (D3cpV), 510, 512, 512t, 513	175–176
illumination efficiency, 483	DDAB, 356t	DMEM/10% FBS for HSV (recipe), 439
imaging speed, 485–486	Death phase, growth curve, 76, 76f	DMEM-SATO Base Growth Medium with NB
implementation, 468–470, 468f	Deconvolution, 465	(recipe), 32
advances in, 470	Defective interfering (DI) particles, 418–419	DMRIE, 356t
laser-scanning design, 469	Denaturation and electrophoresis of RNA with	DNA. See also DNA isolation
Nipkow disk design, 469 specimen-scanning design, 468	formaldehde (protocol), 212–215	blunting of DNA ends, 162
mRNA expression imaged by, 230f, 231f	discussion, 214 materials, 212–213	concentration measurement, 129
multiphoton-excitation fluorescence	method, 213–214	denaturation, 130 depurination of, 129–130
microscopy compared, 471–473	electrophoresis and visualization of RNA, 214	end repair, 168
detection, 472	preparation of formaldehyde-agarose gel, 213	ethanol precipitation of, 82, 129
laser pulse width, 473	preparation of RNA samples for	gene transfer, nonviral methods of
localized excitation, 471–472	electrophoresis, 213	DNA transfection by electroporation
out-of-focus light rejection, 471	recipes, 214–215	(protocol), 364–366
resolution, 473	Denaturation of DNA, for Southern blotting, 130	DNA transfection mediated by lipofection
scattered light, 472	Denaturation solution (recipe), 132	(protocol), 355–357, 356t
photobleaching, 483-484	Dendrites, electron microscopy imaging of,	piggyBac transposon-mediated cellular trans-
point-spread function (PSF), 464, 465, 484	497-498, 499f	genesis in mammalian forebrain by
resolution, factors influencing, 463-466	Denhardt's solution for northerns (100×)	in utero electroporation (protocol),
deconvolution, 465	(recipe), 221	367–375, 369f, 370t, 374f
depth of field, 465	DEPC-H ₂ O (recipe), 211, 380	transfection of mammalian cells with
object illumination and detector	Dephosphorylation 201	fluorescent protein fusions
aperture, 464	with Antarctic phosphatase, 391	(protocol), 358–363
point-spread function, 464 specimen thickness, 465	with calf intestinal alkaline phosphatase (CIP), 261	gene transfer payloads, 353 protocols
signal optimization, 466–467	Deproteinization, in RNA purification, 179	agarose gel electrophoresis, 124–127
detector quantum efficiency, 467	Depth of field, confocal microscopy and, 465	basic polymerase chain reaction, 91–93
image digitization, 467	Depurination of DNA, 129–130	ChIP, 153–157
optical-transfer efficiency, 467	Descanning, 472	ChIP-chip, 160–166
scanning mode, 467	DiA, 553	ChIP-quantitative polymerase chain reac-
signal intensity, 466	Dialysis, extraction of RNA from gel slices by, 303	tion (ChIP-qPCR), 158-159
signal-to-noise ratio (SNR), 466	Diaphragm, microscope, 456, 456f-457f	ChIP-seq, 167–171
theory of confocal optics, 463-466	DiD, 553	electrophorectic mobility-shift assays,
principle, 463, 464f	Diethyl pyrocarbonate (DEPC), 177, 182	139-142
resolution, factors influencing, 463-466	Diethyl pyrocarbonate (DEPC)-treated H ₂ O	formaldehyde cross-linking, 147-149
Conformational actuator, in genetically encoded	(recipe), 189	freezing bacteria for long-term storage,
calcium indicators (GECIs), 509	Digital scanned laser light sheet fluorescence	78-80
Contamination, working without. See Sterile	microscopy (DSLM), 476–488	homologous recombination using bacterial
technique	advanced implementation, 488f	artificial chromosomes, 106–116,
Continuous cell lines, 2	comparison to other microscopy methods,	109f-110f
Countries, 449–450	482–486	isolation of bacterial artificial chromosome
Counting chamber use, 73–74, 74f	cost efficiency, 486	DNA from small-scale cultures, 103–105
example calculation, 74 materials, 73	dynamic range, 486 illumination efficiency, 482–483	making media for bacterial culture, 66–69
method, 73–74, 74f	illumination pattern quality and flexibility,	measurement of bacterial growth by
Craniotomy, 599–600, 604	484–485	spectrophotometry, 75–77, 76f
Cre	imaging speed, 485–486	obtaining isolated colonies of bacteria,
bulk electroporation of <i>Xenopus</i> retinal ganglion	performance in imaging large specimens,	70–72, 71f
cells, 561, 561f	486–487, 487t	preparation and transformation of compe-
in multicolor Brainbow mice, 575, 576f,	photobleaching, 483-484	tent <i>E. coli</i> using calcium chloride,
577t, 578, 580	point-spread function (PSF), 484	85-88

DNA (Continued)	discussion, 499	expected results, 374f, 375
preparation of cross-linked chromatin for	materials, 492-494	materials, 367-368
ChIP, 150-152	method, 494-498, 496f-499f	method, 368-372
preparation of plasmid DNA by alkaline	finding imaged neuron in sections, 496,	animal preparation, 370-371
lysis with sodium dodecyl sulfate:	496f-497f	helper and donor plasmid combina-
minipreparation, 81-84	fixation and immunocytochemistry, 494	tions, 370, 370t
Southern blotting: capillary transfer of	fixation of imaged slices, 494-495	surgical station preparation, 368
DNA to membranes, 128-133	imaging the dendrites in the EM,	suturing and animal recovery, 372
Southern hybridization of radiolabeled	497–498, 499f	in utero electroporation, 371–372
probes to nucleic acids immobilized	resin embedding for EM, 495-496	in utero electroporation setup,
on membranes, 134–138	serial sectioning and imaging in the	368-370, 369f
using Petroff-Hausser counting chamber,	EM, 496-497, 498f	troubleshooting, 372–373
73–74, 74f	recipes, 500	principles of, 540–541
working with bacterial artificial chromo-	troubleshooting, 498-499	
somes, 100–102	methods, 452	single-cell electroporation of <i>Xenopus</i> tadpoles,
	scanning electron microscopy (SEM), 452	540–551
purification for ChIP, 155–156	transmission electron microscopy	efficiency, factors influencing, 542–543
quantitation of, 89–90	(TEM), 452	electrical stimulus parameters, 542
by ethidium bromide fluorescence	resin embedding for EM, 495–496	glass micropipettes, 542
emission, 90	Electrophoresis. See also Agarose gel electrophoresis;	microscopy, 542-543
with spectrophotometer, 89	Polyacrylamide gel electrophoresis	implementation, 543-545, 544f
DNA Clean & Concentrator-5 Kit, 271		coelectroporation of fluorescent dye
DNA isolation	in CLIP (cross-linking and	space fillers with morpholinos
of BAC DNA from small-scale cultures	immunoprecipitation) protocol,	or peptides, 544f, 545
(protocol), 103-105	262–263, 263f, 266	SCE of DNA for neuronal transfection
materials, 103-104	denaturation and electrophoresis of RNA with	543-544, 544f
method, 104	formaldehde (protocol), 212–215	SCE of fluorescent dyes, 544, 544f
recipes, 104-105	electrophoretic mobility-shift assay for	SCE within <i>Xenopus</i> tadpole optic
of plasmid DNA by alkaline lysis (protocol),	DNA-protein complexes	tectum, 543
81–84	(protocol), 139–142	
materials, 81	electrophoretic mobility-shift assays for	microscopy of, 542–543
method, 82	RNA-protein complexes	principles of, 540–541
recipes, 83–84	(protocol), 234–239	protocol, 546–551
	in preparation of small RNA libraries for high-	discussion, 550
DNA microarrays, 143. See also ChIP-chip	throughput sequencing (protocol),	expected results, 550
scanning, 165	299–309, 302f, 304f, 306f, 308f	limitations and special considerations,
DNase	prior to Southern blotting, 129	550
in CLIP (cross-linking and immunoprecipita-	resolving of RNA-protein cross-linked	materials, 546-547, 547f
tion) protocol, 265	complexes on gel, 262-263, 263f	method, 548-549
in purification and culture of retinal ganglion	RNA extraction from gel slices, 302–303	setup, 547f, 548
cells from rodents protocol, 25,	RNase footprinting to map sites of RNA-protein	troubleshooting, 549-550
29-30	interactions (protocol), 240–244	setup, 541-542, 541f, 547f, 548
in purification of rat and mouse astrocytes	Electrophoretic mobility-shift assay (EMSA)	in transfection of mammalian cells with
by immunopanning protocol, 38,	for DNA-protein complexes (protocol), 139–142	fluorescent protein fusions
43-44, 46-47	discussion, 141–142	(protocol), 359
RQ1, 259, 265	materials, 139–140	for transgene introduction into KH2 ES cells,
dNTP solution (recipe), 93		348-349
DOGS (Transfectam), 355-356, 356t	method, 140–141	Elution buffer (recipe), 156
DOSPA, 356t	recipes, 142	Embryonic quail development, 4D fluorescent
DOSPER, 356t	troubleshooting, 141	imaging of, 563–574
DOTMA (Lipofectin), 355-357, 356t	for RNA-protein complexes (protocol), 234–239	overview, 563–564
Drying bacteria, 65	discussion, 237–238	
DSLM. See Digital scanned laser light sheet	materials, 234–235	image analysis, 564
fluorescence microscopy	method, 235-237	microscopy equipment requirements, 564
Dual lasar scanning microscopy for scanning	large multicomponent RNA-protein	in vitro culturing, 564
Dual laser-scanning microscopy, for scanning	complexes, 236-237	pre-imaging considerations, 565-566, 566t
microarray slides, 280–284	longer RNA forming small complex, 236	data storage hardware, 565-566, 566t
Durcupan, 495–496	simple interactions, 235–236	environmental control, 565
dUTP, 315f, 316, 319–320	recipes, 238-239	fluorophore compatibility, 565
Dynabeads, 153–155, 259, 314–315	Electroporation, 101	magnification, 565
Dynamic range, 486, 511	bulk electroporation of retinal ganglion cells	protocol, 567–574
	in live <i>Xenopus</i> tadpoles	materials, 567-568
-	(protocol), 558–562	method, 568-572, 569f-572f
E	discussion, 560–561, 561f	image analysis, 571-572
E. coli	materials, 558–559	inverted imaging of in vitro
as facultative anaerobe, 64	method, 559–560, 560f	embryos, 569
phenotypic drift, 64	recipe, 562	multitime macro imaging, 569–570
preparation and transformation of competent	* * ,	preparation of paper rings, 568
E. coli using calcium chloride	DNA transfection by electroporation	sample setup for in vitro imaging,
(protocol), 85–88	(protocol), 364–366	1 1
materials, 85	materials, 364	568, 569f
	method, 364–365	tiled z-stack time-lapse experiments,
method, 86	recipes, 366	570-571, 570f-572f
recipes, 887–88	of ECFP-Kan insert into electrocompetent	recipes, 573–574
Ecotropic viruses, 338	cells, 113	troubleshooting, 572–573
EDTA, for metal chelation, 176	piggyBac transposon-mediated cellular	Embryonic stem (ES) cells, 344–351
EGTA, for metal chelation, 176	transgenesis in mammalian	Embryos
Electrocompetent cells, preparation of, 112–113	forebrain by in utero	4D fluorescent imaging of embryonic quail
Electron microscopy	electroporation (protocol),	development, 563-574
imaging green fluorescent protein-labeled	367-375, 369f, 370t, 374f	isolating total RNA from mouse embryos or
neurons using light and electron	discussion, 374-375	fetal tissues, 187–190
microscopy (protocol), 492–500	background 374-375	in utero electroporation 371-373

Emission filter, 461, 473	comparison to other microscopy methods,	discussion, 272-273
EMSA. See Electrophoretic mobility-shift assay	482-486	materials, 269–270
End-It enzyme mix, 168	components, 477–480, 479f	method, 270–272
End repair, 168, 316	acousto-optical tunable filter (AOTF),	coupling reaction and purification, 271–272
Enhanced green fluorescent protein (eGFP) bulk electroporation of <i>Xenopus</i> retinal ganglion	477, 481 computer, 480–481	purification of cDNA, 271
cells, 560f, 561	control software, 481	reverse transcription reaction, 270–271
in GENSAT Project engineered mouse strains,	detection system, 479, 481–482	troubleshooting, 272
117–122	illumination/excitation system,	for single-cell electroporation, 544-545
in two-photon imaging of microglia in mouse	477-478, 481	in vivo time-lapse imaging of neuronal
cortex in vivo protocol, 586f, 588f	objective lens, 477-478	development in Xenopus, 552–555
Enhanced yellow fluorescent protein (eYFP), in	secondary observation system, 479–480	552-557, 554f fluorescent dextrans, 552-553
two-photon imaging of microglia in mouse cortex in vivo protocol,	specimen-positioning system, 480	genetic labeling by fluorescent protein
586f, 588f	technical blueprint, 480f temperature control system, 478	expression, 553–555, 554f
Enolase promoter, 555	cost efficiency, 486	image analysis and morphometry, 555-
EnvA, in rabies viral vectors, 416–417, 418	dynamic range, 486	557, 556f
Enzyme stock solution (recipe), 47	illumination efficiency, 482-483	imaging labeled neurons, 555
Epifluorescence, 461, 467	illumination pattern quality and flexibility,	labeling neurons, 552–555 Fluorescent protein fusions (FPFs), 489–491
Epigenetic modifications, 60	484-485	constructing, 489–490
Ethanol	imaging speed, 485–486	development of stable mammalian cell lines
fixation of frozen sections via dehydration in, 195 precipitation	live imaging of embryonic development,	expressing, 490–491
of DNA, 82, 129	478f overview, 476–477, 477f	antibiotic for selection of stable clones, 491
of RNA, 180–181, 181f, 188, 205–206	performance in imaging large specimens,	cells for transfection, 491
Ethanol-washed glass coverslips (recipe), 33	486–487, 487t	DNA for transfection, 491
Ethidium bromide	photobleaching, 483–484	screening protocol, 491 expressing, 490
quantitation of DNA and RNA by ethidium	point-spread function (PSF), 484	genetically encoded calcium indicators (GECIs)
bromide fluorescence emission, 90	features of, 461	508-517
RNA staining with, 214	filters for, 461	transfection of mammalian cells (protocol),
Ethidium bromide (recipe), 126, 132 Eukaryotic initiation factor-1a (EIF-1a) promoter,	4D fluorescent imaging of embryonic quail	358-363
336	development, 563–574 overview, 563–564	discussion, 361–362
Euthanasia of rodents, 29	pre-imaging considerations, 565–566, 566t	functionality of fusion protein, 361–362
Excitation filter, 461	protocol, 567–574	location of fusion protein, 361 materials, 358–359
	materials, 567–568	method, 359–361
r	method, 568-572, 569f-572f	antibiotic selection (day 4), 360
F	recipes, 573-574	colony transfer and selection (days
Fast Green, 559, 560f	troubleshooting, 572–573	14-21), 360
Feeder cells, preparation of, 347	multiphoton-excitation, 471–475	DNA preparation and transfection (day
Fetal bovine serum, in cell culture media, 19 Fiber-optic-based optical neural interface (ONI)	confocal microscopy compared, 471–473 detection, 472	1), 359 expanding stable clones, 361
(protocol), 534–539	laser pulse width, 473	screening (days 21–28), 360
materials, 534–535	localized excitation, 471–472	trypsinization and splitting the cells
method, 535-538, 537f	out-of-focus light rejection, 471	(day 3), 360
infusion of the virus and surgery, 536-537	resolution, 473	washing transfected cells (day 2), 359
optical stimulation, 537–538	scattered light, 472	recipes, 363
preparation for surgery, 535–536	instrumentation, 473–474	Fluorescent proteins. See also Fluorescent protein
preparation of the bilateral ONI, 537f troubleshooting, 538–539	excitation light source, 473 wavelength selection, 473–474	fusions constructing, 489–490
Filters for fluorescence microscopy, 461	setting up the system, 474	expressing, 490
Filter sterilization techniques (protocol)	uses in neuroscience, 474	generation and analysis of lentivirus expressing
materials, 9	overview of, 451	a 2A peptide-linked bicistronic
method, 10	photography, 461	fluorescent construct, 381–402,
filtration of large volume with a disposable	staining for, 461	382f, 384f-385f, 387f, 394f,
cup filter, 10	tips for, 461	396f-397f
filtration of small volume with a syringe filter, 10	uses, 460–461	imaging neuronal activity with genetically
Fingerases, 178	virus titer determination using, 398–399 Fluorescence recovery after photobleaching (FRAP),	encoded calcium indicators, 508–517
Fixation, 455	505–506	measuring membrane voltage with, 518–525
fixing DNA to membrane for hybridization,	Fluorescence resonance energy transfer (FRET)	experimental setup and applications,
131–132, 131t	genetically encoded calcium indicators (GECIs)	522-523, 523f
cross-link by UV irradiation, 132	and, 509-512	fluorescent dyes as sensors, 518
fix by baking in microwave oven, 131	Fluorescent dyes	fluorescent shaker (FlaSh), 519–520,
fix by baking in vacuum oven, 131	dextrans for neuron labeling for in vivo	519t, 520f
of frozen sections via dehydration in ethanol, 195 in imaging green fluorescent protein-labeled	imaging, 552–553 microarray slide hybridization using	improved voltage-sensing fluorescent proteins, 520–522, 521f
neurons using light and electron	fluorescently labeled cDNA	mechanism of fluorescence change, 522
microscopy protocol, 494–495	(protocol), 274–279	protein-based sensors, 518–519
FlaSh (fluorescent shaker), 519-520, 519t, 520f	materials, 274–275	in multicolor <i>Brainbow</i> mice, 575–582,
FlAsH-EDT2, 362	method, 275-279, 276f-278f	576f-577f
Fluorescein, 461	blocking slides, 275-276, 276f	origins of, 448
Fluorescence microscopy, 460–461. See also Con-	hybridization of microarray slides,	voltage-sensing, 519t, 520–522, 520f
focal microscopy	276–279, 277f–278f	Fluorescent shaker (FlaSh), 519–520, 519t, 520f
artifacts, 461 digital scanned laser light sheet fluorescence	recipes, 279 preparation of fluorescent-dye-labeled cDNA	Fluorochromes, 460–461 Formaldehyde
microscopy (DSLM), 476–488	from RNA for microarray	cross-linking
advanced implementation, 488f	hybridization (protocol), 269–273	described, 143

Formaldehyde (Continued)	Gene Expression Omnibus, 324	Glutaraldehyde for fixation, 494, 498
protocol, 147-149	Gene knockout, 60	Glycerol, storing bacteria in, 78-80
discussion, 148–149	Gene Ontology (GO), 294, 330	GlycoBlue, 180, 181f, 302, 304-305
materials, 147	GenePix scanning software, 165, 280–284	Gram stain, 460
method, 148	Generation time, calculation of, 77	GREAT program, 294, 330
recipes, 149	Genetically encoded calcium indicators (GECIs)	Green fluorescent protein (GFP)
denaturation and electrophoresis of RNA with	classes, 509f	bulk electroporation of <i>Xenopus</i> retinal ganglion
formaldehde (protocol), 212–215	fluorescence resonance energy transfer (FRET)	cells, 560–561, 560f
Formamide (recipe), 185 Formamide gel-loading buffer (recipe), 244	and, 509–512	discovery of, 448
Forskolin stock (4.2 mg/mL) (recipe), 33	future of design, 516 imaging neuronal activity with, 508–517	imaging green fluorescent protein-labeled
Förster resonance energy transfer (FRET)	optimization, 512–514	neurons using light and electron microscopy (protocol), 492–500
membrane voltage measurement with	from G-CaMP2 to G-CaMP3, 513, 514f	discussion, 499
fluorescent proteins, 518–525, 521f	GECI expression, 513	materials, 492–494
4D fluorescent imaging of embryonic quail	practical improvement, 512-513	method, 494–498, 496f–499f
development, 563-574	subcellular targeting, 513-514	finding imaged neuron in sections, 496,
overview, 563-564	performance, properties influencing, 510-512	496f-497f
image analysis, 564	calcium affinity, kinetics, and dynamic	fixation and immunocytochemistry, 494
microscopy equipment requirements, 564	range, 511	fixation of imaged slices, 494-495
in vitro culturing, 564	calcium dynamics, 510	imaging the dendrites in the EM,
pre-imaging considerations, 565–566, 566t	GECI expression level, 511–512	497–498, 499f
data storage hardware, 565–566, 566t environmental control, 565	GECI fluorescence properties, 512, 512t structure of, 508–509, 509f	resin embedding for EM, 495-496
fluorophore compatibility, 565	testing standardization, 515	serial sectioning and imaging in the
magnification, 565	use to measure neural activity, 515	EM, 496–497, 498f
protocol, 567–574	Gene transfer, 353–445	recipes, 500
materials, 567–568	protocols, 355–445	troubleshooting, 498–499
method, 568-572, 569f-572f	nonviral methods, 355–380	imaging synaptic protein dynamics using
image analysis, 571-572	DNA transfection by electroporation,	photoactivatable green fluorescent
inverted imaging of in vitro embryos,	364-366	protein (protocol), 501–507
569	DNA transfection mediated by lipofec-	discussion, 505–506 uses of method, 506
multitime macro imaging, 569-570	tion, 355–357, 356t	in vitro and in vivo preparation,
preparation of paper rings, 568	piggyBac transposon-mediated cellular	choosing, 505–506
sample setup for in vitro imaging, 568,	transgenesis in mammalian fore-	imaging setup, 502, 502f
569f	brain by in utero electroporation,	materials, 501–502
tiled z-stack time-lapse experiments, 570–571, 570f–572f	367–375, 369f, 370t, 374f	method, 503-505
recipes, 573–574	single cell/cellular subregion-targeted phototransfection, 376–380,	analysis, 505
troubleshooting, 572–573	378f-379f	choosing photoactivation and imaging
454 sequencing, 323	transfection of mammalian cells with	wavelengths, 503
FPFs. See Fluorescent protein fusions	fluorescent protein fusions,	neuronal transfection for in vitro and
FPKM (fragments per kilobase per million), 328	358–363	in vivo imaging preparations, 503
Fragmentation, RNA, 314-315, 325	viral methods, 381-445	photoactivation, 503–504, 504f
Fragments per kilobase per million (FPKM), 328	concentration and purification of rabies	preparation of PA-GFP-tagged synaptic
FRAP (fluorescence recovery after photobleaching),	viral and lentiviral vectors, 421-	proteins, 503
505-506	426, 424f	time-lapse imaging of fluorescence
Freeze-drying bacteria, 65	construction and packaging of herpes	decay, 504–505 recipes, 506
Freezing bacteria for storage, 65, 78–80	simplex virus/adeno-associated	photoactivatable (PA-GFP), 501, 503–505,
discussion, 79–80	virus (HSV/AAV) hybrid amplicon	504f, 561, 561f
materials, 78–79 methods, 79	vectors, 441–445, 442t, 443f	in vivo time-lapse imaging of neuronal
reviving a frozen culture, 79	generation and analysis of lentivirus expressing a 2A peptide-linked	development in <i>Xenopus</i> , 553–554,
FRET	bicistronic fluorescent construct,	554f
genetically encoded calcium indicators (GECIs)	381–402, 382f, 384f–385f, 387f,	Group velocity dispersion (GVD), 473
and, 509–512	394f-397f	Growth curve, 75-77, 76f
membrane voltage measurement with	generation of replication-competent	Growth factors for retinal ganglion cells, 22-23
fluorescent proteins, 518-525, 521f	and -defective HSV vectors,	Guanidine cesium chloride RNA purification
FRT site, in Brainbow constructs, 579	432-440, 437f-438f	method, 179
	lentiviral vectors for retrograde delivery	Guanidine isothiocyanate, in RNA
G	of recombinases and transactiva-	purification, 179
	tors, 403–409, 407f	
GAII instrument, different multiplex sequencing	rabies viral vectors for monosynaptic	
strategies for, 321	tracing and targeted transgene	Н
Galaxy website, 331	expression in neurons, 410–420, 413f	Halogen light, 459
G-CaMP2, 511–513, 514f G-CaMP3, 511–513, 512t, 514f	stable producer cell lines for adeno- associated virus (AAV) assembly,	Halorhodopsins (HRs), 528t, 529–530
GECIs. See Genetically encoded calcium indicators	427–431, 429f–430f	Hank's balanced salt solution $(10\times)$ (recipe), 252
Gel electrophoresis. See Electrophoresis	Genomic Regions Enrichment of Annotations Tool	Harrison, Ross, 1
Gel-loading buffer $(6\times)$ (recipe), 126	(GREAT) program, 294, 330	Hayflick limit, 2
Gel-loading buffer IV (6×) (recipe), 132	GENSAT (Gene Expression Nervous System Atlas)	HCl, for depurination of DNA, 129
Gel mobility shift assay. See Electrophoretic	Project, 117-122	HeLa cells, 2
mobility-shift assay	Gentamicin, 20	Hemocytometer, 459
Gel purification, in library construction for	GFP. See Green fluorescent protein	HEPA (high-efficiency particle air) filter,
mRNA-Seq, 311-312	Giemsa stain, 460	14, 16–17
Gel shift. See Electrophoretic mobility-shift assay	Glass micropipettes, for single-cell electroporation,	Heparin-binding EGF-like growth factor (HBEGF),
Gel slices, RNA extraction from, 302–303	541–542, 541f, 547f, 548–549	38, 45–46
Gene expression and targeting systems, 530–531	Glassware sterilization for mammalian cell culture, 17	HEPES, in cell culture media, 19
Gene Expression Nervous System Atlas (GENSAT)	GLAST promoter, 375	HEPES buffered cell medium (recipe), 198
Project, 117–122	Gloves, disposable latex, 18	HEPES-buffered saline (HEBS; $2\times$) (recipe), 340

Herpes simplex virus (HSV)	gel purification of 5'- and 3'-ligated	discussion, 230-232, 231f, 231t
construction and packaging of herpes simplex	RNA product, 305-306, 306f	materials, 224-225, 226t
virus/adeno-associated virus (HSV/	gel purification of 3'-ligated RNA	method, 225–229, 227f
AAV) hybrid amplicon vectors	product, 303–305, 304f	clearing and mounting embryos, 229
(protocol), 441–445, 442t, 443f discussion, 444–445	PCR amplification of cDNA, 307 PmeI digestion of radiolabeled	image acquisition, 229
materials, 441–442	oligonucleotides, 307	in situ HCR, 225, 227f, 228–229 recipes, 232–233
method, 442–444, 442t, 443f	reverse transcription, 306	troubleshooting, 229–230, 230f
cotransfection of packaging-defective	size selection and gel purification of	Hydrophobic interaction chromatography, in RNA
HSV-1 helper DNA and vector	RNA sample, 301-303, 302f	purification, 179
DNA, 442-443, 442t, 443f	3' linker ligation, 303	Hygromycin, 349
harvesting packaged vectors, 443-444	recipes, 309	
titration of amplicon stocks, 444	strand-specific RNA sequencing library	,
generation of replication-competent and -defective HSV vectors (protocol),	preparation (protocol), 313–322 discussion, 319	I
432–440, 437f–438f	different multiplex sequencing strat-	IGF-1 (insulin-like growth factor 1), 23
discussion, 437–438	egies for GAII and HiSeq2000	Illumina Genome Analyzer, 171, 310
materials, 432-433	instruments, 321	Illumina ssRNA-Seq kit, 319
method, 434-437, 437f	false antisense read derived from	Illumina TruSeq multiplex kit, 321 Image digitization, 467
construction of recombination virus,	uracil-minus RNA, 320	Imaging
434–436	purification and size selection on mag-	knowing when specimen is unhealthy, 56
isolation of viral DNA for transfection,	netic beads, 320–321	maintaining live cells and tissue slices in
434 viral stock preparation and purification,	recipes, 322 strand-specific RNA-Seq vs. conven-	imaging setup, 50-57, 52f-54f
436, 437f	tional RNA-Seq, 319–320, 320f	collecting images, 55-56
recipes, 439	using phosphorothioate oligos to	medium considerations, 51
troubleshooting, 437	prevent PCR amplification of	mounting live specimens for microscopic
life cycle, 437–438	adapter dimers, 321	observation, 51–54
replication-defective HSV vectors, 438	materials, 313-314	maintenance of gas and pH conditions
Herring testis carrier DNA (recipe), 221	method, 314–319, 315f	after mounting, 53–54, 53f–54f technique for chamber construction
High-ovomucoid stock (6×) (recipe), 33	dA-tailing, 316	and sample mounting, 51–53, 52f
High-ovomucoid stock solution (10×) (recipe), 47 High-throughput sequencing (HTS)	end-repair, 316 first-strand cDNA synthesis, 315–316	temperature considerations, 54–55
data processing, 323–331	general procedure for using AMPure	overview of live imaging, 50-51
classification of changes and associated	beads, 318–319	photodamage, 55
biology, 330	mix barcoded libraries for multiplex	protocols
experimental design, 324-328	sequencing, 318	light modulation of proteins
mapping, 329	PCR enrichment, 317-318, 318f	establishing a fiber-optic-based optical
measuring expression levels and changes	polyA RNA isolation and fragmenta-	neural interface, 534–539 imaging green fluorescent protein-
in expression, 329 presentation of data, 330–331	tion, 314–315	labeled neurons using light and
raw reads, 328–329	second-strand synthesis with dUTP, 316 triple-SPRI purification and size selec-	electron microscopy, 492–500
transcript (isoform) assembly, 329	tion, 317, 317f	imaging synaptic protein dynamics
validation, 329-330	Y-shape adapter ligation, 316–317	using photoactivatable green fluo-
experimental design, 324-328	systems for, 323	rescent protein, 501-507
library construction, 325–327	HiSeq2000 instrument, different multiplex	microscopy basics
quantity of starting material, 324–325	sequencing strategies for, 321	using the light microscope, 453–462
fragmentation of whole-transcriptome RNA using <i>E. coli</i> RNase III	H2Ld allele, 489	in vivo imaging bulk electroporation of retinal ganglior
for, 296–298	Homogenization of tissues, 184, 188	cells in live <i>Xenopus</i> tadpoles,
library construction basics, 325–327	Homologous recombination using bacterial artificial chromosomes (protocol),	558–562
amplification, 325–326	106–116, 109f–110f	mapping anatomy to behavior in
bar coding, 326-327	materials, 106–108	Thy1:18 ChR2-YFP transgenic mice
directionality (strand selection), 326	method, 108-114, 109f-110f	using optogenetics, 594-605
normalization, 328	analysis of putative recombinant BACs,	preparation and 4D fluorescent imaging
number of reads, 327	113-114	of quail embryos, 567–574
paired ends, 326	arabinose-induced excision of the selectable	single-cell electroporation of <i>Xenopus</i> tadpole tectal neurons, 546–551
priming <i>versus</i> fragmentation, 325 read length, 326	marker, 114	two-photon imaging of microglia in
replicates, 327–328	assembly and preparation of the ECFP-Kan cassette, 108–112, 109f–110f	mouse cortex in vivo, 583–593
mRNA-Seq libraries from poly(A) ⁺ mRNA	electroporation of the ECFP-Kan insert into	topic introductions
for Illumina transcriptome high-	electrocompetent cells, 113	Brainbow mice, generating and imaging
throughput sequencing, 310-312	preparation of electrocompetent cells,	multicolor, 575-582
notes and considerations before beginning,	112-113	confocal microscopy principles and prac-
311	recipes, 115-116	tices, 463–470
overview, 310	troubleshooting, 114–115	constructing and expressing fluorescent
tips and troubleshooting, 311–312	Hot-start PCR, 95–96	protein fusions, 489–491
adapter ligation, 311 first gel purification, 311–312	HSV. See Herpes simplex virus HTS. See High-throughput sequencing	digital scanned laser light sheet fluorescence microscopy, 476–488
optimization, 311	Humidified incubators, contamination of, 18	4D fluorescent imaging of embryonic quai
PCR enrichment, 312	Hybrid amplicon vectors, construction and pack-	development, 563–566
second gel purification, 311–312	aging of herpes simplex virus/	imaging neuronal activity with genetically
preparation of small RNA libraries (protocol),	adeno-associated virus (HSV/	encoded calcium indicators,
299-309	AAV), 441–445, 442t, 443f	508-517
materials, 299–300	Hybridization buffer for ChIP-chip (recipe), 165	measuring membrane voltage with fluores-
method, 301–308	Hybridization chain reaction	cent proteins, 518–525
5' linker ligation, 305 gel purification of amplified cDNA,	combinatorial analysis of RNA expression	microscopy, 449–452 multiphoton-excitation fluorescence
307–308, 308f	patterns in mouse embryos using HCR (protocol), 224–233	microscopy, 471–475
20, 200, 2001	1101 (protocor), 221 233	microscop _j , 1/1 4/3

Imaging (Continued)	IRES (internal ribosomal entry site), 399	bicistronic insert and lentiviral vector
optogenetics, 526–533	IR irradiation, in single cell/cellular subregion-	backbone preparation, 384-391,
single-cell electroporation in Xenopus,	targeted transfection (protocol),	384f-385f, 387f
540-545	376–380	bicistronic lentiviral vector production,
in vivo time-lapse imaging of neuronal development in <i>Xenopus</i> , 552–557	Isoflurane, 370, 535, 594, 597, 604 Isoform assembly, 329	391–394, 394f concentrating lentiviral supernatants, 398
Imaris software, 564	Isolated colonies of bacteria, obtaining, 70–72, 71f	harvesting bicistronic viral
Immersion oil, 449	Isopropanol precipitation of RNA, 185	supernatants and infecting cells,
cleaning from lenses, 458	ITGB5, 42, 45, 46–47	396–398, 397f
Type A and Type B, 453		imaging infected 3T3 cells for bicis-
using on the condenser lens, 457	1	tronic expression, 397–398, 397f plasmid DNA preparation, 393–394
using on the objective lens, 457 Immortal cell lines, 2	Java, 564	plasmid maps, 385f
Immunoblotting, for fusion protein analysis,)ava, 201	transfecting 293FT packaging cells for
361–362	V	virus production, 394-396,
Immunocytochemistry, in imaging green fluores-	K	395f-396f
cent protein-labeled neurons using	Kanamycin (30 mg/mL stock solution) recipe, 68t	transformation of <i>E. coli</i> , 391–393 viral titer determination using fluores-
light and electron microscopy protocol, 494	Kanamycin (50 mg/mL stock solution) recipe, 68t K ⁺ channel, 518–519, 520t, 521	cent microscope, 398–399
Immunofluorescence, 460	Ketamine, 370, 535	lentiviral vectors for retrograde delivery of
Immunopanning	Klenow	recombinases and transactivators
astrocytes, 38-49, 41f	in antibody-positioned RNA amplification	(protocol), 403-409, 407f
retinal ganglion cells, 22, 25-32, 28f	(APRA) protocol, 250	discussion, 406–408, 407f
Immunoprecipitation	in cDNA library preparation, 316	materials, 403–404
CLIP (cross-linking and immunoprecipitation) identification of RNAs bound by a	in ChIP-seq protocol, 169 in generation and analysis of lentivirus	method, 405–406 recipe, 408
specific protein (protocol), 254–268	expressing a 2A peptide-linked	optogenetics and, 530
for fusion protein analysis, 361–362	bicistronic fluorescent construct	Library
Incubators, contamination of, 18	protocol, 384f, 388-389	high-throughput Illumina strand-specific RNA
Indirect immunofluorescence, 460	Koehler illumination, 455-456, 456f-457f	sequencing library preparation
Inducible expression, 490		(protocol), 313–322 discussion, 319
Infectious waste, disposal of, 63 Inhibitor stock solution (recipe), 48	L	different multiplex sequencing strat-
Insulin, 23	Lag phase, growth curve, 76, 76f	egies for GAII and HiSeq2000
Insulin stock (0.5 mg/mL) (recipe), 33	Laminar flow hood, 16–18. See also Biosafety	instruments, 321
Interference filters, 461	cabinet	false antisense read derived from
Internal ribosomal entry site (IRES), 399	Laser	uracil-minus RNA, 320
in utero electroporation, piggyBac transposon-	mode-locked, 473	purification and size selection on mag-
mediated cellular transgenesis in mammalian forebrain by, 367–375,	in single cell/cellular subregion-targeted phototransfection (protocol),	netic beads, 320–321 recipes, 322
369f, 370t, 374f	376–380	strand-specific RNA-Seq vs. conven-
discussion, 374–375	Laser capture microdissection (LCM), single-neu-	tional RNA-Seq, 319-320, 320f
background, 374-375	ron isolation for RNA analysis	using phosphorothicate oligos to pre-
expected results, 374f, 375	using, 191, 195–196	vent PCR amplification of adapter
materials, 367–368	Laser pulse width, 473 Laser-scanning confocal microscopy, 451. See also	dimers, 321 materials, 313–314
method, 368–372 animal preparation, 370–371	Confocal microscopy	method, 314–319, 315f
helper and donor plasmid combinations,	conversion to multiphoton-excitation	dA-tailing, 316
370, 370t	fluorescence microscopy, 474	end-repair, 316
surgical station preparation, 368	laser-scanning design, 469	first-strand cDNA synthesis, 315–316
suturing and animal recovery, 372	optical-transfer efficiency, 467	general procedure for using AMPure
in utero electroporation, 371–372 in utero electroporation setup, 368–370,	Lateral geniculate nucleus, 21 LB freezing buffer (recipe), 101	beads, 318–319 mix barcoded libraries for multiplex
369f	LB (Luria-Bertani) liquid medium (recipe), 83, 102,	sequencing, 318
troubleshooting, 372–373	105, 115, 401	PCR enrichment, 317–318, 318f
Inverted microscopy, 451	LB solid medium with 100 $\mu g/mL$ ampicillin	polyA RNA isolation and fragmenta-
in vivo imaging protocols	(recipe), 402	tion, 314–315
bulk electroporation of retinal ganglion cells in live <i>Xenopus</i> tadpoles, 558–562	Lead citrate for EM (recipe), 497, 500 Lenses, 449. <i>See also</i> Objective lens	second-strand synthesis with dUTP, 316
mapping anatomy to behavior in Thy1:18	numerical aperture (N.A.), 449, 459	triple-SPRI purification and size selec- tion, 317, 317f
ChR2-YFP transgenic mice using	xylene for cleaning objective lens, 453, 458	Y-shape adapter ligation, 316–317
optogenetics, 594-605	Lentivirus	mRNA-Seq libraries from poly(A) ⁺ mRNA for
preparation and 4D fluorescent imaging of quail	advantages as vehicle for gene delivery, 399	Illumina transcriptome high-
embryos, 567–574	concentration and purification of rabies viral	throughput sequencing, 310–312
single-cell electroporation of <i>Xenopus</i> tadpole tectal neurons, 546–551	and lentiviral vectors (protocol), 421–426, 424f	notes and considerations before beginning, 311
two-photon imaging of microglia in mouse	discussion, 425	overview, 310
cortex in vivo, 583–593	materials, 421-422	tips and troubleshooting, 311-312
in vivo time-lapse imaging of neuronal development	method, 422-425, 424f	adapter ligation, 311
in <i>Xenopus</i> , 552–555, 552–557, 554f	recipes, 425–426	first gel purification, 311–312
fluorescent dextrans, 552–553	generation and analysis of lentivirus expressing	optimization, 311
genetic labeling by fluorescent protein expression, 553–555, 554f	a 2A peptide-linked bicistronic fluorescent construct (protocol),	PCR enrichment, 312 second gel purification, 311–312
image analysis and morphometry, 555–557, 556f	381–402, 382f, 384f–385f, 387f,	preparing RNA for high-throughput
imaging labeled neurons, 555	394f, 396f-397f	sequencing, 299–309
labeling neurons, 552–555	materials, 381–384, 382f	replicate, 327
lipophilic vital dyes, 553	method, 384–399, 384f–385f, 387f,	LiCl-urea solution for RNA isolation (recipe), 189
IP-astrocyte base medium (recipe), 48	394f-397f	LIF (leukemia inhibitory factor), 23

LifterSlip, 276–278	Light-sheet fluorescence microscopy (LSFM). See	Mg ²⁺ , chelation of, 176
Ligation	also Digital scanned laser light sheet	MgCl ₂ -CaCl ₂ solution (recipe), 87
in ChIP-seq protocol, 169	fluorescence microscopy (DSLM) optical sectioning, 476	Microarray hybridization preparation of fluorescent-dye-labeled cDNA
in generation and analysis of lentivirus expressing a 2A peptide-linked	point-spread function (PSF), 484	from RNA for microarray
bicistronic fluorescent construct	principles of, 476, 477	hybridization (protocol), 269–273
(protocol), 391	Lipofectamine 2000, for transfection of 293FT	discussion, 272–273
Ligation-mediated polymerase chain reaction	packaging cells for virus produc-	materials, 269-270
(LM-PCR), 162–163, 167	tion, 395, 395f	method, 270-272
Light	Lipofectin (DOTMA), 355-357, 356t	coupling reaction and purification,
halogen, 459	Lipofection	271 – 272
tungsten, 459	DNA transfection mediated by lipofection	purification of cDNA, 271 reverse transcription reaction, 270–271
Light microscopy. See also Fluorescence microscopy	(protocol), 355–357, 356t materials, 355–356, 356t	troubleshooting, 272
imaging green fluorescent protein-labeled neurons using light and electron	method, 356–357	slide hybridization using fluorescently labeled
microscopy (protocol), 492–500	lipids used in, 356t	cDNA (protocol), 274-279
discussion, 499	Lipophilic vital dyes, 553	materials, 274–275
materials, 492-494	Liposomes, 357	method, 275–279, 276f–278f
method, 494-498, 496f-499f	LM-PCR mix (recipe), 166	blocking slides, 275–276, 276f hybridization of microarray slides,
finding imaged neuron in sections, 496,	LNL-GFP, 561, 561f	276–279, 277f–278f
496f-497f	Loading buffer for mobility shift assays (recipe), 238	recipes, 279
fixation and immunocytochemistry, 494	Log phase, growth curve, 76, 76f Low-ovomucoid stock (10×) (recipe), 33	Microarrays. See also DNA microarrays; Microarray
fixation of imaged slices, 494–495 imaging the dendrites in the EM,	Low-ovomucoid stock solution ($10\times$) (recipe), 48	hybridization
497–498, 499f	lox sites, in Brainbow constructs, 579	methods for processing microarray data,
resin embedding for EM, 495-496	LSFM. See Light-sheet fluorescence microscopy	291–295 analysis, 292–295
serial sectioning and imaging in the		experimental design, 291–292
EM, 496-497, 498f	A 4	materials, 291
recipes, 500	M	scanning microarray slides(protocol), 280–284,
troubleshooting, 498–499	Magnetic concentrator, 155	283f
methods, 450–451	Magnification, 449	discussion, 283-284, 283f
bright-field microscopy, 450 dark-field microscopy, 450	Mammalian cell culture, 16–20 gene transfer protocols	materials, 280–281
fluorescence microscopy, 450	DNA transfection by electroporation, 364–	method, 281–283
inverted microscopy, 451	366	results file creation, 282–283 scanning slide, 281
laser scanning confocal microscopy, 451	DNA transfection mediated by lipofection,	spotfinding, 281–282
Nomarski imaging (differential interference	355–357, 356t	template for spotfinding, 281
contrast) microscopy, 451	single cell/cellular subregion-targeted	tips on hybridizing, washing, and scanning
phase-contrast microscopy, 450	phototransfection, 376–380,	Affymetrix microarrays (protocol),
using the light microscope (protocol), 453–462	378f–379f transfection of mammalian cells with	285–290
components of a light microscope, 454f considerations for light microscopy,	fluorescent protein fusions, 358–363	materials, 285–286 method, 286–290
459–460	infection with short hairpin RNA (shRNA)	Micrococcal nuclease, 260–261
illumination type, 459	retroviruses (protocol), 342–343	Micro-FastTrack mRNA isolation kit, 188
measurement, 459	materials, 342	Microglia, two-photon imaging in mouse cortex in
objective lens type, 459	method, 342-343, 343t	vivo (protocol), 583-593
photography, 460	medium formulation, 19–20	Micropipettes, for single-cell electroporation,
sizes of select biological samples, 460t	medium preparation, 20	541-542, 541f, 547f, 548-549
staining, 460 discussion, 458–461	purification and culture of retinal ganglion cells from rodents (protocol), 25–34, 28f	Microscopy, 449–488 contrast, 449–450
fluorescence microscopy, 460–461	purification of rat and mouse astrocytes by	electron microscopy methods, 452
materials, 453–454	immunopanning (protocol),	scanning electron microscopy (SEM), 452
method	38–49, 41f	transmission electron microscopy (TEM),
cleaning the microscope, 455-457	sterile technique, 16-18	452
fixing and staining specimen, 455	Mapping, 329	light microscopy methods, 450–451
making a cell smear, 455	MATLAB, 564	bright-field microscopy, 450
viewing a specimen, 455–457 viewing a specimen, 455–457	mCherry, 561, 561f Medium formulation, for mammalian cell culture,	dark-field microscopy, 450
condenser aperture diaphragm, 457f	19–20	fluorescence microscopy, 451 inverted microscopy, 451
field diaphragm image, 456f	Medium preparation, for mammalian cell culture, 20	laser scanning confocal microscopy, 451
using aligned microscope to quickly	Membrane voltage, measuring with fluorescent	Nomarski imaging (differential interference
examine samples, 456-457	proteins, 518-525	contrast) microscopy, 451
using immersion oil on the condenser	experimental setup and applications, 522-523,	phase-contrast microscopy, 450
lens, 457	523f	magnification, 449
using immersion oil on the objective lens, 457	fluorescent dyes as sensors, 518 fluorescent shaker (FlaSh), 519–520, 519t, 520f	numerical aperture (N.A.), 449 refractive index, 449
using Koehler illumination, 455–456,	improved voltage-sensing fluorescent proteins,	resolution, 449
456f–457f	520–522, 521f	for single-cell electroporation, 542–543, 549
working rules, 458-459	mechanism of fluorescence change, 522	using the light microscope (protocol), 453–462
Light modulation of proteins, protocols for	protein-based sensors, 518-519	components of a light microscope, 454f
establishing a fiber-optic-based optical neural	Mermaid, 519t, 520, 522–523, 523f	considerations for light microscopy, 459–460
interface, 534–539	Metabond cement, 601, 604	illumination type, 459
imaging green fluorescent protein-labeled neurons using light and electron	Metacam, 370 Metal chelator, 176	measurement, 459 objective lens type, 459
microscopy, 492–500	Metal ions, RNA degradation caused by, 175–176	photography, 460
imaging synaptic protein dynamics using	Methanol for fixation, 453, 455	sizes of select biological samples, 460t
photoactivatable green fluorescent	Methylcellulose overlay (recipe), 439	staining, 460
protein, 501–507	Methylene blue stain, 460	discussion, 458-461

Microscopy (Continued)	high-throughput Illumina strand-specific RNA	NanoDrop, 271-272, 312, 388
fluorescence microscopy, 460–461	sequencing library preparation	Natronomonas pharaonis, opsins from, 528t,
features of, 461 staining for, 461	(protocol), 313–322	529–530 Neomycin, 350
tips for, 461	discussion, 319 different multiplex sequencing strat-	Nestin promoter, 375
uses, 460–461	egies for GAII and HiSeq2000	Neurons
materials, 453-454	instruments, 321	gene transfer protocols
method	false antisense read derived from	lentiviral vectors for retrograde delivery of
cleaning the microscope, 455–457	uracil-minus RNA, 320	recombinases and transactivators
fixing and staining specimen, 455 making a cell smear, 455	purification and size selection on mag-	(protocol), 403–409, 407f
viewing a specimen, 455–457	netic beads, 320–321 recipes, 322	piggyBac transposon-mediated cellular
viewing a specimen, 455–457	strand-specific RNA-Seq vs. conven-	transgenesis in mammalian fore-
condenser aperture diaphragm, 457f	tional RNA-Seq, 319–320, 320f	brain by in utero electroporation (protocol), 367–375, 369f, 370t,
field diaphragm image, 456f	using phosphorothioate oligos to pre-	374f
using aligned microscope to quickly	vent PCR amplification of adapter	rabies viral vectors for monosynaptic trac-
examine samples, 456–457	dimers, 321	ing and targeted transgene expres-
using immersion oil on the condenser lens, 457	materials, 313–314	sion in neurons (protocol), 410-
using immersion oil on the objective	method, 314–319, 315f	420, 413f
lens, 457	dA-tailing, 316 end-repair, 316	single cell/cellular subregion-targeted
using Koehler illumination, 455–456,	first-strand cDNA synthesis, 315–316	phototransfection (protocol),
456f-457f	general procedure for using AMPure	376–380, 378f–379f
working rules, 458-459	beads, 318-319	imaging green fluorescent protein-labeled neurons using light and electron
Microwave oven, fixing DNA to membrane, 131	mix barcoded libraries for multiplex	microscopy (protocol), 492–500
MinElute Kit, clean up dsDNA with, 203–204	sequencing, 318	imaging neuronal activity with genetically
DNA binding to column, 203–204 elute DNA bound to column, 204	PCR enrichment, 317–318, 318f	encoded calcium indicators, 508-
wash DNA bound to column, 204	polyA RNA isolation and fragmenta- tion, 314–315	517
MiR30-based shRNA vector (protocol), 333–337	second-strand synthesis with dUTP, 316	imaging synaptic protein dynamics using
discussion, 335–336	triple-SPRI purification and size selec-	photoactivatable green fluorescent
examples of mammalian shRNA vectors, 334f	tion, 317, 317f	protein (protocol), 501–507
materials, 333	Y-shape adapter ligation, 316-317	labeling for in vivo imaging, 552–555, 554f
method, 334–335	mRNA-Seq libraries from poly(A) ⁺ mRNA for	fluorescent dextrans, 552–553 genetic labeling by fluorescent protein
recipes, 336 MMRRC (Mutant Mouse Regional Resource	Illumina transcriptome high-	expression, 553–555, 554f
Center), 122	throughput sequencing, 310–312	lipophilic vital dyes, 553
Moloney murine leukemia virus (M-MuLV)	notes and considerations before beginning, 311	number in adult human brain, 174
promoter, 336	overview, 310	single-cell electroporation of Xenopus tadpole
MOPS buffer (10×) (recipe), 214	tips and troubleshooting, 311–312	tectal neurons (protocol), 546-551
Morpholinos, delivery by single-cell electropora-	adapter ligation, 311	single-neuron isolation for RNA analysis using
tion, 545	first gel purification, 311-312	pipette capture and laser capture
Motion artifacts, 588–589 Mounting live specimens for microscopic obser-	optimization, 311	microdissection (protocol), 191–199
vation, 51–54	PCR enrichment, 312 second gel purification, 311–312	synaptic connections, number of, 174
maintenance of gas and pH conditions after	number of distinct expressed, 174	in vivo time-lapse imaging of neuronal
mounting, 53-54, 53f-54f	phototransfection of neurons with, 378–379,	development in Xenopus, 552–557
perfusion system, simple gravity-fed, 53, 53f	379f	Neutralization buffer I (recipe), 132
simple integrated setup, 54f	single cell capture for mRNA reverse	Neutralization buffer II (recipe), 132
technique for chamber construction and sample	transcription, 194–195	NHS (<i>N</i> -hydroxysuccinimide) esters, 269, 271–273
mounting, 51–53, 52f	MS-222, 548, 559	Nitrocellulose, isolation of RNA from, 264
Mouse Brainbow mice, generating and imaging	Multiphoton-excitation fluorescence microscopy, 471-475	Nomarski imaging (differential interference con-
multicolor, 575–582	confocal microscopy compared, 471–473	trast) microscopy, 451 Northern blots
GENSAT database of engineered mouse strains,	detection, 472	advantages, 221
117–122	laser pulse width, 473	capillary transfer of RNA from agarose gels and
isolating total RNA from mouse embryos or	localized excitation, 471-472	filter hybridization using standard
fetal tissues, 187-190	out-of-focus light rejection, 471	stringency conditions (protocol),
purification and culture of retinal ganglion cells	resolution, 473	216–223
from, 25–34, 28f	scattered light, 472	discussion, 220–221
purification and culture of retinal ganglion cells from (protocol),	instrumentation, 473–474	materials, 216–217 methods, 216–220
25–34, 28f	excitation light source, 473 wavelength selection, 473–474	autoradiography, 219, 219f
purification of rat and mouse astrocytes by	setting up the system, 474	capillary transfer, 217–218, 218f
immunopanning, 38-49, 41f	uses in neuroscience, 474	cross-linking and hybridization, 218-
transgenic shRNA mouse creation by	Murine phosphoglycerate kinase promoter, 489	219
recombinase-mediated cassette	Murine RNA polymerase II promoter, 489	stripping and reprobing, 220
exchange, 344–351	Murine stem cell virus (MSCV) long terminal	washing, 219
two-photon imaging of microglia in mouse	repeat promoter, 336	recipes, 221–222
cortex in vivo, 583–593	Mutant Mouse Regional Resource Center (MMRRC), 122	troubleshooting, 220 described, 220–221
Mouth pipetting, 18 mRNA	Mycoplasma contamination	disadvantages, 221
antisense RNA amplification for target	from mouth pipetting, 18	NS21 supplement, 23
assessment of total mRNA from a	periodic analysis for, 20	NT-4/5 (neurotrophin-4/5), 23
single cell (protocol), 200-211	•	Numerical aperture (N.A.), 449, 459
combinatorial analysis of RNA expression	N	in digital scanned laser light sheet fluorescence
patterns in mouse embryos using	N	microscopy (DSLM), 477
hybridization chain reaction	NAC stock (5 mg/mL) (recipe), 33, 48	in 4D fluorescent imaging of embryonic quail
(protocol), 224–233	Nalidixic acid (100 mg/mL stock solution) recipe, 68t	development, 563-566

Numerical aperture (N.A.) (Continued)	P	Photomultiplier tubes, 467
in light-sheet-based fluorescence microscopy	[32P], in electrophorectic mobility-shift assays,	Photoshop, 496
(LSFM), 484	139–142	Phototoxicity, laser light sheet fluorescence
optical-transfer efficiency, 467	Paired-end reads, 311, 324, 326	microscopy and, 476
in point-spread function (PSF), 464 Nyquist criterion, 467	Pancreatic RNase, 177	Phototransfection, single cell/cellular subregion-targeted (protocol), 376–380,
ryquist effection, 407	Papain Cori I II	378f-379f
0	in purification and culture of retinal ganglion cells	discussion, 379–380
0	from rodents (protocol), 29–30 in purification of rat and mouse astrocytes by	materials, 376–377
Object-Image software, 556–557, 556f	immunopanning (protocol), 42	method, 377–379, 378f
Objective lens, 449 cleaning, 458	Paraformaldehyde for fixation, 494	aligning multiphoton beam in the
digital scanned laser light sheet fluorescence	Paraformaldehyde (PFA) for HCR (4%) (recipe), 232	microscope, 377
microscopy (DSLM), 477–478	Pax2, 224, 226t	configuring parameters for maximal
numerical aperture (N.A.), 449, 459	PBase, 374–375	cell viability, 378, 378f
phase-contrast, 459	PBS(P) (recipe), 500	phototransfection of neurons with mRNA, 378–379, 379f
using immersion oil on, 457	PBS for CLIP (recipe), 267 PBS (pH 7.5) for HSV (recipe), 439	recipes, 380
xylene for cleaning, 453, 458 Ocular lens	PBST for HCR (recipe), 232	PicoGreen dsDNA Assay Kit, 318
cleaning, 458	PCR. See Polymerase chain reaction	piggyBac transposon-mediated cellular transgenesis
micrometer, 459	Penicillin, 20	in mammalian forebrain by in
Oligodendrocytes, 36, 374f	Pentobarbitone, 494	utero electroporation (protocol),
Oligonucleotide, conjugation to antibody, 248	Peptides, delivery by single-cell electroporation, 545	367–375, 369f, 370t, 374f
Opsins, 526–530, 527t–528t	Perfusion of rat tissue, 494	discussion, 374–375
Optical density (O.D.), 75–77, 89	Petroff-Hausser counting chamber, 73–74, 74f, 459 pH, of cell culture media, 19	background, 374–375 expected results, 374f, 375
Optical neural interface (ONI), 531 establishing a fiber-optic-based (protocol),	Phase-contrast microscopy, 450	materials, 367–368
534–539	Phase-contrast objectives, 459	method, 368–372
materials, 534–535	Phenol (recipe), 185–186	animal preparation, 370-371
method, 535-538, 537f	Phenol:chloroform, 179, 183-185, 267	helper and donor plasmid combinations,
infusion of the virus and surgery,	Phenol red dye, 19	370, 370t
536-537	Phenotypic drift in bacteria, 64	surgical station preparation, 368
optical stimulation, 537–538	Phosphate-buffered saline ($10\times$; pH 7.35)	suturing and animal recovery, 372
preparation for surgery, 535–536	(recipe), 253	in utero electroporation, 371–372
preparation of the bilateral ONI, 537f troubleshooting, 538–539	Phosphate-buffered saline (PBS) (recipe), 149, 156, 363, 366	in utero electroporation setup, 368–370, 369f
Optical sectioning	Phosphate-buffered saline (PBS) for HCR ($10\times$,	troubleshooting, 372–373
laser light sheet fluorescence microscopy	pH 7.4) (recipe), 232	Pipette capture, single-neuron isolation for RNA
(LSFM), 476, 484	Phosphate removal from RNA ends, 261	analysis using, 191-198, 193f-195
multiphoton-excitation fluorescence	Phosphate-SDS washing solution 1 (recipe), 137	Pipette solution (recipe), 198
microscopy, 471	Phosphate-SDS washing solution 2 (recipe), 137	Pipetting
Optical-transfer efficiency, 467	Phosphorothioate, 318, 318f, 321	mouth, 18
Opto-α1AR/Opto-β2AR, 528t Optogenetics, 526–533	Phosphorylation of 5' ends of RNAs with PNK, 262 Photoactivatable green fluorescent protein (PA-	sterile technique (protocol), 6–8 discussion, 8
described, 448	GFP), 501, 503–505, 504f, 561, 561f	materials, 6
establishing a fiber-optic-based optical	Photoactivation	method, 6–8
neural interface (protocol),	imaging synaptic protein dynamics using	opening and pipetting with individually
534–539, 537f	photoactivatable green fluorescent	wrapped disposable pipettes, 7–8
gene expression and targeting systems, 530–531	protein (protocol), 501–507	pipetting with packaged disposable
mapping anatomy to behavior in Thy1:18	discussion, 505–506	pipettes, 7
ChR2-YFP transgenic mice using optogenetics (protocol), 594–605	uses of method, 506 in vitro and in vivo preparation,	pipetting with reusable glass pipettes, 6–7
materials, 594–596	choosing, 505–506	PK buffer (recipe), 267
method, 596–603	imaging setup, 502, 502f	Plasmids
analyzing the data, 603	materials, 501-502	AAV, 427
closing the incision and recovering the	method, 503-505	bulk electroporation of retinal ganglion cells in
animal, 601	analysis, 505	live <i>Xenopus</i> tadpoles (protocol),
identifying the target region, 596	choosing photoactivation and imaging	558–562, 560f
performing craniotomy and introduc- ing the fiber implant, 599–600	wavelengths, 503 neuronal transfection for in vitro and in	DNA preparation (minipreps), 81–84, 393–394
preparing for stimulation, 601–602,	vivo imaging preparations, 503	in gene transfer protocols
602f	photoactivation, 503–504, 504f	DNA transfection by electroporation
preparing surgical area, 596-597, 597f	preparation of PA-GFP-tagged synaptic	(protocol), 364–366
preparing the mouse, 597-599, 598f	proteins, 503	DNA transfection mediated by lipofection
securing the implant, 600–601	time-lapse imaging of fluorescence	(protocol), 355–357, 356t
stimulating the animal, 602–603, 603f	decay, 504–505	generation and analysis of lentivirus
troubleshooting, 604 opsins, 526–530, 527t–528t	recipes, 506 Photobleaching	expressing a 2A peptide-linked bicistronic fluorescent construct
optical neural interface, 531, 534–539, 537f	digital scanned laser light sheet fluorescence	(protocol), 384f–385f, 388–395,
outlook for, 532	microscopy (DSLM), 483-484	394f
tools, 527t-528t	fluorescence recovery after photobleaching	piggyBac transposon-mediated cellular
Oregon Green BAPTA, 552	(FRAP), 505–506	transgenesis in mammalian fore-
Orthojet, 601	single plane illumination microscopy (SPIM), 483	brain by in utero electroporation
Osmolality, of cell culture media, 19	Photocathode, confocal microscope, 467	(protocol), 367–375, 369f, 370t,
Out-of-focus light rejection, 471 Overview	Photodamage, 55 Photography	374f preparation and transformation of competent
digital scanned laser light sheet fluorescence	digital, 460	E. coli using calcium chloride
microscopy (DSLM), 476–477, 477f	in fluorescence microscopy, 461	(protocol), 85–88
Oxygen radical scavengers, 461	light microscopy and, 460	materials, 85

Plasmids (Continued)	optimization strategy, 96-97	method, 241-243, 242f
method, 86	in preparation of small RNA libraries for high-	establishing RNase digestion condi-
recipes, 887-88	throughput sequencing protocol, 307	tions, 241–242
preparation of plasmid DNA by alkaline lysis	quantification of products by NanoDrop, 388	footprinting with RNase A, RNase T1,
with sodium dodecyl sulfate:	RT-PCR, 210, 256, 265-267, 330	or RNase VI, 243
minipreparation (protocol), 81–84	stepdown, 95	footprinting with RNase I, 242-243
materials, 81	sterile technique when setting up, 3	preparing markers, 241
method, 82	thermocycler programming, 95	typical experiment, 242f
recipes, 83–84 transfection by single-cell electroporation	touchdown PCR, 94–95 using phosphorothioate oligos to prevent PCR	recipes, 244 troubleshooting, 243
of DNA for <i>Xenopus</i> neurons,	amplification of adapter dimers, 321	Proteins, light modulation of
543–544, 548	variables	establishing a fiber-optic-based optical neural
Plasticware sterilization for mammalian cell	conditions favoring enhanced specificity, 97t	interface, 534–539
culture, 17	cycle number, 98	imaging green fluorescent protein-labeled
PmeI digestion of radiolabeled oligonucleotides, 307	enhancing agents, 97-98	neurons using light and electron
PNK, 262, 301	inhibitors, 98	microscopy, 492-500
Point-spread function (PSF)	matrix analyses, 98	discussion, 499
confocal microscopy, 464, 465, 484	Mg ²⁺ concentration, 98	materials, 492–494
digital scanned laser light sheet fluorescence	product smearing, 98–99 reamplification, 99	method, 494–498, 496f–499f
microscopy (DSLM), 484 lateral and axial extents of, 484	Polymerase mix (recipe), 166	recipes, 500 troubleshooting, 498–499
light-sheet-based fluorescence microscopy	Polynucleotide kinase, 262, 301	imaging synaptic protein dynamics using
(LSFM), 484	Polynucleotide kinase (PNK) buffer (recipe), 268	photoactivatable green fluorescent
two-photon fluorescence microscopy, 484	Pouring, sterile technique for, 8	protein, 501–507
Polyacrylamide gel electrophoresis	[³² P]phosphate, sterile technique when labeling	discussion, 505-506
in ChIP-seq protocol, 169-170	cells with, 4	imaging setup, 502, 502f
in CLIP (cross-linking and	Prehybridization/hybridization solution for	materials, 501-502
immunoprecipitation) protocol,	hybridization in aqueous buffer	method, 503-505
262–263, 263f, 266	(recipe), 137	recipes, 506
electrophoretic mobility-shift assay (EMSA),	Prehybridization/hybridization solution for	Protocols
139–142, 234–239	hybridization in formamide buffers (recipe), 138	gene transfer, 355–445
in preparation of small RNA libraries for high-throughput sequencing	Prehybridization/hybridization solution for	nonviral methods, 355–380 DNA transfection by electroporation,
(protocol), 299–309, 302f, 304f,	hybridization in phosphate-SDS	364–366
306f, 308f	buffer (recipe), 138	DNA transfection mediated by lipofec-
resolving of RNA-protein cross-linked	Prehybridization/hybridization standard stringency	tion, 355–357, 356t
complexes on gel, 262-263, 263f	mix (recipe), 221	piggyBac transposon-mediated cellular
RNA extraction from gel slices, 302-303	Prehybridization solution (recipe), 166	transgenesis in mammalian fore-
RNase footprinting to map sites of RNA-	Primary amines, to quench formaldehyde, 148	brain by in utero electroporation,
protein interactions (protocol),	Primary cell culture, 1–2	367-375, 369f, 370t, 374f
240-244	Probe hybridization buffer for HCR (recipe), 232	single cell/cellular subregion-targeted
Polyacrylamide gel solution (8% in 1× TBE)	Probe wash buffer for HCR (recipe), 233	phototransfection, 376–380,
(recipe), 171	Promoter. See also specific promoters in Brainbow constructs, 578	378f-379f
PolyA RNA, isolation and fragmentation, 314–315 Polybrene, 343	neuron-specific, 555	transfection of mammalian cells with
Polymerase chain reaction (PCR), 91–99	for shRNA vectors, 336	fluorescent protein fusions, 358–363
antisense RNA amplification for target	Proteinase K, 98, 179	viral methods, 381–445
assessment of total mRNA from a	Protein-DNA interaction protocols	concentration and purification of rabies
single cell (protocol), 200–211	ChIP, 153–157	viral and lentiviral vectors, 421 –
basic protocol, 91–93	ChIP-chip, 160–166	426, 424f
materials, 91	ChIP-quantitative polymerase chain reaction	construction and packaging of herpes
method, 92	(ChIP-qPCR), 158–159	simplex virus/adeno-associated
recipes, 92–93	ChIP-seq, 167–171	virus (HSV/AAV) hybrid amplicon
in cDNA library preparation, 317–318,	electrophorectic mobility-shift assays, 139–142	vectors, 441-445, 442t, 443f
325–326	formaldehyde cross-linking, 147–149 preparation of cross-linked chromatin for ChIP,	generation and analysis of lentivirus
for ChIP-chip, 162–163 ChIP-quantitative polymerase chain reaction	150–152	expressing a 2A peptide-linked
(ChIP-qPCR)	Protein-RNA interactions	bicistronic fluorescent construct,
overview, 144, 145t	CLIP (cross-linking and immunoprecipitation)	381–402, 382f, 384f–385f, 387f,
protocol, 158–159	identification of RNAs bound by a	394f–397f generation of replication-competent
materials, 158	specific protein (protocol), 254–268	and -defective HSV vectors, 432–
method, 158-159	discussion, 267	440, 437f-438f
ChIP-quantitative polymerase chain reaction	materials, 254-256	lentiviral vectors for retrograde delivery
(ChIP-qPCR) (protocol), 158-159	method, 256-267	of recombinases and transactiva-
materials, 158	recipes, 267-268	tors, 403-409, 407f
method, 158-159	electrophoretic mobility shift assays for	rabies viral vectors for monosynaptic
in ChIP-seq protocol, 170–171	RNA-protein complexes	tracing and targeted transgene
in generation and analysis of lentivirus	(protocol), 234–239	expression in neurons, 410-420,
expressing a 2A peptide-linked	discussion, 237–238	413f
bicistronic fluorescent construct	materials, 234–235	stable producer cell lines for adeno-
protocol, 384–390	method, 235–237	associated virus (AAV) assembly,
in homologous recombination using bacterial artificial chromosomes protocol	large multicomponent RNA-protein complexes, 236–237	427–431, 429f–430f
analysis of putative recombinant BACs,	longer RNA forming small complex, 236	imaging light modulation of proteins
113–114	simple interactions, 235–236	establishing a fiber-optic-based optical
assembly and preparation of the ECFP-Kan	recipes, 238–239	neural interface, 534–539
cassette, 108–112	RNase footprinting to map sites of (protocol),	imaging green fluorescent protein-
hot-start, 95-96	240–245	labeled neurons using light and
ligation-mediated (LM-PCR) 162-163 167	materials 240-241	electron microscopy 492-500

Protocols (Continued)	combinatorial analysis of RNA expression	defective interfering (DI) particles, 418-419
imaging synaptic protein dynamics	patterns in mouse embryos using	rabies viral vectors for monosynaptic tracing and
using photoactivatable green fluo-	hybridization chain reaction, 224–	targeted transgene expression in
rescent protein, 501–507 microscopy basics	233 creating an miR30-based shRNA vector,	neurons (protocol), 410–420, 413 discussion, 418–419
using the light microscope, 453–462	333–337	materials, 410–412
in vivo imaging	creating transgenic shRNA mice by recom-	method, 412–418, 413f
bulk electroporation of retinal ganglion	binase-mediated cassette exchange,	amplification from supernatants to
cells in live Xenopus tadpoles,	344-351	titered stocks, 414-415
558-562	denaturation and electrophoresis of RNA	amplification from titered stocks to
4D fluorescent imaging of embryonic quail development, 563–566	with formaldehde, 212–215 electrophoretic mobility shift assays for	more titered stocks, 415 flowchart, 413f
mapping anatomy to behavior in	RNA-protein complexes, 234–239	rescue from cDNA, 412–414
Thy1:18 ChR2-YFP transgenic mice	fragmentation of whole-transcriptome RNA	stock production for concentration and
using optogenetics, 594-605	using E. coli RNase III, 296-298	use in vivo, 415–418
preparation and 4D fluorescent imaging	high-throughput Illumina strand-specific	recipe, 419
of quail embryos, 567–574 single-cell electroporation of <i>Xenopus</i>	RNA sequencing library prepara-	stock production for concentration and us
tadpole tectal neurons, 546–551	tion, 313–322 identification of RNA cargoes by	in vivo
two-photon imaging of microglia in	antibody-positioned RNA	EnvA-enveloped version, 416–417 RVG-enveloped version, 415–416
mouse cortex in vivo, 583-593	amplification, 246–253	VSVG-enveloped version, 417–418
working with cells	infection of mammalian cells with retroviral	RV glycoprotein in lentiviral vectors, 404,
aspirating fluids with sterile technique, 11–12	shRNAs, 342-343	406-407
filter sterilization techniques, 9–10 purification and culture of retinal ganglion	isolating total RNA from mouse embryos or	RV glycoprotein in rabies viral vectors, 411,
cells from rodents, 25–34, 28f	fetal tissues, 187–190	415–416
purification of rat and mouse astrocytes by	methods for processing microarray data,	Rapid amplification of cDNA ends (RACE), 336
immunopanning, 38–49, 41f	291–295 microarray slide hybridization using fluo-	Rats
sterile pipetting and pouring techniques, 6–8	rescently labeled cDNA, 274–279	anesthesia for, 370 piggyBac transposon-mediated cellular
working sterilely in a biosafety cabinet,	northern blots: capillary transfer of RNA	transgenesis in mammalian
13–15, 15t	from agarose gels and filter	forebrain by in
working with DNA	hybridization using standard strin-	utero electroporation (protocol),
agarose gel electrophoresis, 124–127	gency conditions, 216-223	367-375, 369f, 370t, 374f
basic polymerase chain reaction, 91–93 ChIP, 153–157	packaging shRNA retroviruses, 338-341	purification and culture of retinal ganglion cell
ChIP-chip, 160–166	preparation of fluorescent-dye-labeled	from (protocol), 25–34, 28f
ChIP-quantitative polymerase chain reac-	cDNA from RNA for microarray	purification of rat and mouse astrocytes by
tion (ChIP-qPCR), 158-159	hybridization, 269–273 preparation of small RNA libraries for high-	immunopanning (protocol), 38–49, 41f
ChIP-seq, 167–171	throughput sequencing, 299–309	Rayleigh criterion, 464
electrophorectic mobility-shift assays,	purification of RNA from cells and tissues	Read length, 311, 326
139-142	by acid phenol-guanidinium	Reads, number of, 327
formaldehyde cross-linking, 147–149 freezing bacteria for long-term storage,	thiocyanate-chloroform extraction,	Reads per kilobase per million (RPKM), 328, 329
78–80	183-186	ReAsH-EDT2, 362
homologous recombination using bacterial	RNase footprinting to map sites of RNA-	Receiver operator characteristics (ROC), 294
artificial chromosomes, 106-116,	protein interactions, 240–245	Recipes
109f-110f	scanning microarray slides, 280–284 single-neuron isolation for RNA analysis	aCSF for hippocampus, 506
isolation of bacterial artificial chromosome	using pipette capture and laser	ACSF for two-photon imaging, 592 agar or agarose containing media, 87, 102
DNA from small-scale cultures,	capture microdissection, 191–199	albumin-agarose, 573–574
103–105 making media for bacterial culture, 66–69	tips on hybridizing, washing, and scanning	alkaline lysis solution I, 83, 104
measurement of bacterial growth by	Affymetrix microarrays, 285–290	alkaline lysis solution II, 83, 105
spectrophotometry, 75–77, 76f	PSF. See Point-spread function	alkaline lysis solution III, 83, 105
obtaining isolated colonies of bacteria, 70-	PXL buffer (recipe), 268	alkaline transfer buffer, 132
72, 71f	Pyrosequencing, 323	ampicillin (100 mg/mL stock solution), 68t
preparation and transformation of		amplification buffer $(10\times)$, $92-93$
competent <i>E. coli</i> using calcium	Q	amplification buffer for HCR, 232
chloride, 85–88 preparation of cross-linked chromatin for	QIAGEN MinElute gel extraction kit, 312	annealing buffer $(5\times)$, 336 BDNF stock $(50 \mu g/mL)$, 32
ChIP, 150–152	qPCR. See ChIP-quantitative polymerase chain	binding buffer $(2\times)$, 322
preparation of plasmid DNA by alkaline	reaction	binding buffer for mobility shift assays, 238
lysis with sodium dodecyl sulfate:	Quail embryos, preparation and 4D fluorescent	blocking buffer for microarrays, 279
minipreparation, 81–84	imaging of, 567-574	buffered HBSS for APRA, 252
Southern blotting: capillary transfer of	Quantitation of DNA and RNA, 89-90	buffer L1, 152
DNA to membranes, 128–133	by ethidium bromide fluorescence emission, 90	buffer L2, 152
Southern hybridization of radiolabeled	with spectrophotometer, 89	buffer L3, 152
probes to nucleic acids immobilized	Quantum efficiency, 467	cell culture medium for virus production, 408, 419
on membranes, 134–138 using Petroff-Hausser counting chamber,	Qubit dsDNA HS Assay Kit, 318	ChIP RIPA buffer, 156 chloramphenicol (20 mg/mL stock solution), 68
73–74, 74f		ciliary Neurotrophic factor (10 µg/mL), 32
working with bacterial artificial chromo-	R	collection tube buffer, 198
somes, 100–102	Rabies virus	complete cell growth medium, 401
working with RNA	concentration and purification of rabies viral	cross-linking buffer, 149
antisense RNA amplification for target	and lentiviral vectors (protocol),	culture medium (AAV), 431
assessment of total mRNA from	421–426, 424f	denaturation solution, 132
a single cell, 200–211	discussion, 425	Denhardt's solution for northerns $(100\times)$, 22
CLIP (cross-linking and immunoprecipita-	materials, 421–422	DEPC-H ₂ O, 211, 380
tion) identification of RNAs bound by a specific protein, 254–268	method, 422–425, 424f recipes, 425–426	diethyl pyrocarbonate (DEPC)-treated H ₂ O, 189 DMEM/10% FBS for HSV, 439
σy a specific protein, 234–200	1001pcs, 123-120	DIVIDIVI/ 10/0 FD3 IOI 113 V, 437

Recipes (Continued)	RSB100 cell lysis buffer, 268	Resin embedding for electron microscopy, 495–496
DMEM-SATO Base Growth Medium with	SATO supplement (100×), 34	Resolution, 449
NB, 32	SATO supplement, NB-based (100×), 48–49	confocal microscopy, factors influencing,
dNTP solution, 93 elution buffer, 156	scaleA2, 233 SDS, 138	463–466
enzyme stock solution, 47	SDS extraction buffer, 244	digital scanned laser light sheet fluorescence microscopy (DSLM), 476
ethanol-washed glass coverslips, 33	second-strand buffer $(10\times)$, 253	multiphoton-excitation fluorescence
ethidium bromide, 126, 132	SET (20×), 222	microscopy and confocal
formamide, 185	SOB, 87	microscopy compared, 473
formamide gel-loading buffer, 244	SOC, 88	Restriction digestion
forskolin stock (4.2 mg/mL), 33	sodium acetate, 189	of cDNA from antibody, 251
gel-loading buffer $(6\times)$, 126	solution D, 186	sterile technique when setting up digests, 3
gel-loading buffer IV (6×), 132	splicing mix for mobility shift assays $(4\times)$, 238	Retinal ganglion cells (RGCs), 21-34
Hank's balanced salt solution (10×), 252	SSC, 132, 138, 279	advantages as a model system, 21-22, 22f
HEPES-buffered cell medium, 198	SSC for northerns $(20\times)$, 222	anatomy, function, and development, 21
HEPES-buffered saline (HEBS; $2\times$), 340	SSC (2.2×)/SDS (0.22%), 166	bulk electroporation in live Xenopus tadpoles
herring testis carrier DNA, 221	SSCT for HCR $(5\times)$, 233	(protocol), 558–562
high-ovomucoid stock $(6\times)$, 33	SSPE, 133, 138 STE 93, 105	discussion, 560–561, 561f
high-ovomucoid stock (10×), 47	STE, 83, 105 Steinberg's rearing medium, 562	materials, 558–559
hybridization buffer for ChIP-chip, 165	streptomycin (100 mg/mL stock solution), 68t	method, 559–560, 560f recipe, 562
inhibitor stock solution, 48 insulin stock (0.5 mg/mL), 33	sucrose (20%), 425	principles of isolation and culture, 22–23
IP-astrocyte base medium, 48	sucrose (60%), 425	purification and culture from rodents
kanamycin (30 mg/mL stock solution), 68t	SYBR Gold, 126, 133	(protocol), 25–34
kanamycin (50 mg/mL stock solution), 68t	TAE, 116, 127, 171, 402	materials, 25–27
LB freezing buffer, 101	TBE buffer, 127, 171	methods, 27-32, 28f
LB (Luria-Bertani) liquid medium, 83, 102,	TBE electrophoresis buffer (10×), 238	dissection, 29-30
105, 115, 401	TBS (pH 7.5) for HSV, 439	panning, 30-31
LB solid medium with 100 μ g/mL ampicillin, 402	T4 DNA ligase buffer (10 \times), 336	plating, 31–32
lead citrate for EM, 500	TE buffer $(10\times)$, 83, 105, 133, 156, 189	preparation, 27–29
LiCl-urea solution for RNA isolation, 189	TE buffer for RNA isolation, 189	trituration, 30
LM-PCR mix, 166	terrific broth, 84	trypsinization, 31
loading buffer for mobility shift assays, 238	tetracycline (15 mg/mL stock solution), 68t	recipes, 32–34
low-ovomucoid stock (10×), 33, 48	3T3 test cells for infection, 401	Retrograde delivery of recombinases and
methylcellulose overlay, 439	thyroxine (T3) stock (4 µg/mL), 34 TPE, 127	transactivators, lentiviral vectors
MgCl ₂ -CaCl ₂ solution, 87 MOPS buffer ($10\times$), 214	tracking dye, 215	for, 403–409, 407f Retroviruses, short hairpin RNA (shRNA)
NAC stock (5 mg/mL), 33, 48	trimethoprim (10 µg/mL stock solution), 68t	infection of mammalian cells with (protocol),
nalidixic acid (100 mg/mL stock solution), 68t	Tris-glycine buffer $(10\times)$, 239	342–343
neutralization buffer I, 132	T1 sequencing buffer, 244	materials, 342
neutralization buffer II, 132	293FT cells for transfection, 400	method, 342-343, 343t
paraformaldehyde (PFA) for HCR (4%), 232	urea loading dye, 244	packaging (protocol), 338-341
PBS(P), 500	wash buffer A, 222	materials, 338-339
PBS for CLIP, 267	wash buffer B, 222	method, 339-340
PBS (pH 7.5) for HSV, 439	wash buffer C, 222	recipe, 340
PBST for HCR, 232	wash buffer D, 222	Reverse footprinting, 243
phenol, 185–186	washing buffer for ssRNA-Seq, 322	Reverse transcriptase, lithium inhibition of, 315
phosphate-buffered saline (10×; pH 7.35), 253	Xenopus tadpole rearing solution, 550	Reverse transcriptase mix stock (recipe), 309
phosphate-buffered saline (PBS), 149, 156,	x-gal staining solution for HSV, 439	Reverse transcription cDNA preparation for microarray
363, 366 phosphate-buffered saline (PBS) for HCR	YT, 84 YT medium (2×), 400	hybridization, 270–271
$(10\times, \text{ pH } 7.4), 232$	Recombinase-mediated cassette exchange (RMCE),	in preparation of small RNA libraries for high-
phosphate-SDS washing solution 1, 137	transgenic shRNA mouse creation	throughput sequencing protocol,
phosphate-SDS washing solution 2, 137	by, 344–351	306
pipette solution, 198	materials, 344-346	single cell capture for mRNA, 194-195
PK buffer, 267	method, 346-351, 346f	RGC growth medium (recipe), 33
polyacrylamide gel solution (8% in $1 \times TBE$), 171	creation of transgenic mice, 351	RGCs. See Retinal ganglion cells
polymerase mix, 166	culture of ES cells before electroporation,	Rhodamine, 461
polynucleotide kinase (PNK) buffer, 268	347-348	Ribonucleases (RNases), 177-178. See also specific
prehybridization/hybridization solution for	electroporation of transgenes into KH2 ES	enzymes
hybridization in aqueous buffer, 137	cells, 348–349	in CLIP protocol, 259–261
prehybridization/hybridization solution for	feeder cell preparation, 347	fragmentation of whole-transcriptome RNA
hybridization in formamide buffers, 138	plating irradiated feeder cells, 347	using <i>E. coli</i> RNase III (protocol), 296–298
prehybridization/hybridization solution for	preparation of gelatin-coated ES culture plates, 346–347	materials, 296–297
hybridization in phosphate-SDS	selection of ES cell clones containing	method, 297
buffer, 138	integrated shRNA cassettes, 349	recipe, 298
prehybridization/hybridization standard	Southern blotting for validation of clones,	troubleshooting, 297
stringency mix, 221	350-351	preventing damage from, 177-178, 182
prehybridization solution, 166	testing for shRNA expression, 350	Ribonucleoprotein (RNP), 251, 259
probe hybridization buffer for HCR, 232	testing neomycin sensitivity, 349	Rifampicin (50 mg/mL stock solution) recipe, 68t
probe wash buffer for HCR, 233	Recombinases, lentiviral vectors for retrograde deliv-	RNA, 173-351. See also mRNA
PXL buffer, 268	ery of (protocol), 403–409, 407f	chemical structure, 175, 176f
reverse transcriptase mix stock, 309	Refractive index, 449	degradation causes
RGC growth medium, 33	rep gene, AAV, 427–430, 430f, 441, 443f, 444–445	metal ions, 175–176
rifampicin (50 mg/mL stock solution), 68t	Replication-defective HSV vectors, 438	pH, 175
RNase I dilution buffer, 244	Reporter mouse strains, in GENSAT Project,	ribonucleases, 177–178, 182
RNase III buffer (10 \times), 298	117-122	extraction from gel slices, 302-303

RNA (<i>Continued</i>) fragmentation using <i>E. coli</i> RNase III, 296–298	isolating total RNA from mouse embryos or fetal tissues (protocol), 187–190	RNase H, 203, 310, 316 RNase I, footprinting with, 242–243
gene transfer payloads, 353	materials, 187	RNase I dilution buffer (recipe), 244
library preparation, 299–309	method, 188	RNase III, fragmentation of whole-transcriptome
precipitation	recipes, 189	RNA using E. coli RNase III (pro-
carriers, 180	troubleshooting, 188-189	tocol), 296–298
ethanol, 180-181, 181f, 188, 205-206	methods, 178-179	RNase III buffer (10×) (recipe), 298
guidelines for, 180–181, 181f	column chromatography, 179	RNase inhibitors, 177
isopropanol, 185	guanidine cesium chloride, 179	RNaseOUT, 259, 270
protocols	RNA extraction from tissues, 179	RNA-Seq
antisense RNA amplification for target assessment of total mRNA from	SDS/proteinase K/phenol:chloroform, 179	data processing, 323–331 classification of changes and associated
a single cell, 200–211	TRIzol reagent, 178	biology, 330
CLIP (cross-linking and immunoprecipita-	resuspending pelleted RNA, 181	experimental design, 324–328
tion) identification of RNAs bound	quantitation of, 89–90	mapping, 329
by a specific protein, 254-268	by ethidium bromide fluorescence	measuring expression levels and changes
combinatorial analysis of RNA expression	emission, 90	in expression, 329
patterns in mouse embryos using	with spectrophotometer, 89	presentation of data, 330-331
hybridization chain reaction, 224-	single cell/cellular subregion-targeted	raw reads, 328-329
233	phototransfection (protocol),	transcript (isoform) assembly, 329
creating an miR30-based shRNA vector,	376–380, 378f–379f	validation, 329–330
333–337	spike-in, 311, 328	experimental design, 324–328 library construction, 325–327
creating transgenic shRNA mice by	staining, 214 RNA-binding proteins (RBPs), 246, 249f, 252, 254.	quantity of starting material, 324–325
recombinase-mediated cassette exchange, 344–351	See also RNA-protein interactions	high-throughput Illumina strand-specific RNA
denaturation and electrophoresis of RNA	RNA cargoes, identification by antibody-positioned	sequencing library preparation
with formaldehde, 212–215	RNA amplification, 246–253	(protocol), 313–322
electrophoretic mobility shift assays for	RNAClean XP, 316	discussion, 319
RNA-protein complexes, 234–239	RNA-induced silencing complex (RISC), 353	different multiplex sequencing strat-
fragmentation of whole-transcriptome RNA	RNA interference (RNAi), 335, 338, 344, 346f	egies for GAII and HiSeq2000
using E. coli RNase III, 296-298	RNAlater, 179	instruments, 321
high-throughput Illumina strand-specific	RNA ligase, 261–262, 264, 303, 305	false antisense read derived from
RNA sequencing library prepara-	RNA-protein interactions	uracil-minus RNA, 320
tion, 313–322	CLIP (cross-linking and immunoprecipitation) identification of RNAs bound by a	purification and size selection on mag-
identification of RNA cargoes by antibody-	specific protein (protocol), 254–268	netic beads, 320–321 recipes, 322
positioned RNA amplification, 246–253	discussion, 267	strand-specific RNA-Seq vs. conven-
infection of mammalian cells with retroviral	materials, 254–256	tional RNA-Seq, 319–320, 320f
shRNAs, 342–343	method, 256-267	using phosphorothioate oligos to pre-
isolating total RNA from mouse embryos or	recipes, 267-268	vent PCR amplification of adapter
fetal tissues, 187–190	electrophoretic mobility shift assays for	dimers, 321
methods for processing microarray data,	RNA-protein complexes	materials, 313-314
291–295	(protocol), 234–239	method, 314–319, 315f
microarray slide hybridization using fluo-	discussion, 237–238 materials, 234–235	dA-tailing, 316
rescently labeled cDNA, 274–279	method, 235–237	end-repair, 316 first-strand cDNA synthesis, 315–316
northern blots: capillary transfer of RNA	large multicomponent RNA-protein	general procedure for using AMPure
from agarose gels and filter hybridization using standard strin-	complexes, 236–237	beads, 318–319
gency conditions, 216–223	longer RNA forming small complex, 236	mix barcoded libraries for multiplex
packaging shRNA retroviruses, 338–341	simple interactions, 235-236	sequencing, 318
preparation of fluorescent-dye-labeled	recipes, 238-239	PCR enrichment, 317-318, 318f
cDNA from RNA for microarray	RNase footprinting to map sites of (protocol),	polyA RNA isolation and fragmenta-
hybridization, 269-273	240-245	tion, 314–315
preparation of small RNA libraries for high-	materials, 240–241	second-strand synthesis with dUTP, 316
throughput sequencing, 299–309	method, 241–243, 242f	triple-SPRI purification and size selec-
purification of RNA from cells and tissues by	establishing RNase digestion conditions, 241–242	tion, 317, 317f
acid phenol-guanidinium thiocya-	footprinting with RNase A, RNaseT1,	Y-shape adapter ligation, 316–317 library construction basics, 325–327
nate-chloroform extraction, 183–186 RNase footprinting to map sites of	or RNase VI, 243	amplification, 325–326
RNA-protein interactions, 240–245	footprinting with RNase I, 242–243	bar coding, 326–327
scanning microarray slides, 280–284	preparing markers, 241	directionality (strand selection), 326
single-neuron isolation for RNA analysis	typical experiment, 242f	normalization, 328
using pipette capture and laser	recipes, 244	number of reads, 327
capture microdissection, 191–199	troubleshooting, 243	paired ends, 326
tips on hybridizing, washing, and scanning	RNase A, 177, 259-260	priming versus fragmentation, 325
Affymetrix microarrays, 285-290	RNase assays, 178	read length, 326
purification	RNase footprinting to map sites of RNA-protein	replicates, 327–328
from cells and tissues by acid phenol-gua-	interactions (protocol), 240–245	mRNA-Seq libraries from poly(A) ⁺ mRNA for
nidinium thiocyanate-chloroform	materials, 240–241	Illumina transcriptome high-
extraction (protocol), 183–186	method, 241–243, 242f	throughput sequencing, 310–312
for mammalian cells grown in mono-	establishing RNase digestion conditions, 241–242	notes and considerations before beginning, 311
layers, 184 for mammalian cells grown in suspen-	footprinting with RNase A, RNaseT1, or	overview, 310
sion, 184	RNase VI, 243	tips and troubleshooting, 311–312
materials, 183–184	footprinting with RNase I, 242–243	adapter ligation, 311
method, 184–185, 184t	preparing markers, 241	first gel purification, 311–312
recipes, 185-186	typical experiment, 242f	optimization, 311
for tissues, 184	recipes, 244	PCR enrichment, 312
	troubleshooting 243	second gel purification 311-312

RNA-Seq (Continued)	selection of ES cell clones containing	SOLiD sequencing, 323
strand-specific RNA-Seq (ssRNA-Seq) versus	integrated shRNA cassettes, 349	Solution D (recipe), 186
conventional RNA-Seq, 319–320,	Southern blotting for validation of	Sonifier, 150–151
320f	clones, 350–351	Southern blotting, 350–351
systems for, 323	testing for shRNA expression, 350	capillary transfer of DNA to membranes
RNase VI, 243	testing neomycin sensitivity, 349	(protocol), 128–133
RNaseZap, 192, 225, 229	Short interfering RNAs (siRNAs), 145	materials, 128-129
RNA shatter method, 310	shRNA vectors	method, 129-132, 131t
RNasin, 177, 203, 206, 207, 249, 259, 265	miRNA-based design, 335-336	DNA denaturation, 130
RNasin Plus, 315	e e	DNA digestion and fractionation by gel
	promoters, 336	
ROC (receiver operator characteristics), 294	Signal optimization, for confocal microscopy, 466–	electrophoresis, 129
Rodents. See Mouse; Rats	467	DNA transfer, 130–131
RPKM (reads per kilobase per million), 328, 329	Signal-to-noise ratio (SNR), 55	fixing DNA to membrane, 131–132, 131t
RQ1 DNase, 259, 265	confocal microscopy and, 465, 466	recipes, 132–133
RSB100 cell lysis buffer (recipe), 268	genetically encoded calcium indicators (GECIs),	hybridization of radiolabeled probes to nucleic
RT-PCR, 210, 256, 265–267, 330	510–513, 516	acids immobilized on membranes
KT T CK, 210, 250, 203 207, 550		
	Significance analysis of microarrays (SAM), 294	(protocol), 134–138
C	Simian virus-40 (SV40) promoters, 489	materials, 134-135
S	Single-cell electroporation of Xenopus tadpoles,	method, 135-137
SAM (significance analysis of microarrays), 294	540-551, 554f	hybridization, 136
SATO supplement (100×) (recipe), 34	efficiency, factors influencing, 542-543	prehybridization, 135
	electrical stimulus parameters, 542	washing the membrane, 136–137
SATO supplement, NB-based (100×) (recipe), 48–49		
ScaleA2 (recipe), 233	glass micropipettes, 542	recipes, 137–138
Scanning electron microscopy (SEM), 452	microscopy, 542-543	SPARC, 519t, 521–522
Scanning microarrays, 165, 280-284	implementation, 543-545, 544f	Specimen chamber, for mounting live specimens
discussion, 283-284, 283f	coelectroporation of fluorescent dye space	for microscopic observation, 51–54
materials, 280–281	fillers with morpholinos or pep-	maintenance of gas and pH conditions after
		mounting, 53–54, 53f–54f
method, 281–283	tides, 544f, 545	6.
results file creation, 282-283	SCE of DNA for neuronal transfection,	perfusion system, simple gravity-fed, 53, 53f
scanning slide, 281	543-544, 544f	simple integrated setup, 54f
spotfinding, 281–282	SCE of fluorescent dyes, 544, 544f	technique for chamber construction and sample
template for spotfinding, 281	SCE within Xenopus tadpole optic tectum,	mounting, 51-53, 52f
Schiff base, 148	543	Spectrophotometry
		measurement of bacterial growth by (protocol),
SDS	microscopy of, 542–543	
preparation of plasmid DNA by alkaline lysis	principles of, 540–541	75–77, 76f
with sodium dodecyl sulfate:	protocol, 546–551	calculation of generation time, 77
minipreparation (protocol), 81–84	discussion, 550	discussion, 76–77
in RNA purification, 179	expected results, 550	materials, 75
SDS (recipe), 138	limitations and special considerations, 550	method, 75-76
SDS extraction buffer (recipe), 244		normal growth in liquid culture, 76f
	materials, 546–547, 547f	
Second-strand buffer (10×) (recipe), 253	method, 548–549	quantitation of DNA and RNA, 89
Sequencing. See High-throughput sequencing (HTS)	setup, 547f, 548	SpeedVac, 180
Serum, in cell culture media, 19	troubleshooting, 549-550	SPIM. See Single plane illumination microscopy
SET (20×) (recipe), 222	setup, 541-542, 541f, 547f, 548	Spinning-disk confocal fluorescence microscopy, 486
SEVAG, in RNA purification, 179	Single-neuron isolation for RNA analysis using	Splicing mix for mobility shift assays (4×)
SFOs (step-function opsins), 527t, 530	pipette capture and laser capture	(recipe), 238
	microdissection (protocol), 191–	Spotfinding, 281–282
Short hairpin RNA (shRNA)		
creating miR30-based shRNA vector	199	SPRI (solid phase reversible immobilization) beads,
(protocol), 333–337	discussion, 197–198	316–318, 321
discussion, 335–336	materials, 191–192	SSC (recipe), 132, 138, 279
examples of mammalian shRNA vectors, 334f	method, 192-196	SSC for northerns $(20\times)$ (recipe), 222
materials, 333	laser capture microdissection, 195-196	SSC (2.2×)/SDS (0.22%) (recipe), 166
method, 334–335	pipette capture, 192–195, 193f–195f	SSCT for HCR $(5\times)$ (recipe), 233
	* * *	
recipes, 336	recipes, 198	SSPE (recipe), 133, 138
delivery by single-cell electroporation, 545	troubleshooting, 196–197	ssRNA-Seq. See Strand-specific RNA-Seq
retroviruses	Single plane illumination microscopy (SPIM), 478f,	Staining, for light microscopy, 460
infection of mammalian cells with (proto-	481, 482-486	Stationary phase, growth curve, 76, 76f
col), 342–343	dynamic range, 486	STE (recipe), 83, 105
materials, 342	illumination efficiency, 482–483	Steinberg's rearing medium (recipe), 562
	illumination pattern quality and flexibility,	Step-function opsins (SFOs), 527t, 530
method, 342–343, 343t	1 1 1	1
packaging (protocol), 338–341	484–485	Sterile technique, 2, 3–15
materials, 338–339	photobleaching, 483	aspirating fluids with (protocol), 11-12
method, 339-340	point-spread function (PSF), 484	materials, 11
recipe, 340	Slides, calibrated, 459	method, 11-12
transgenic shRNA mouse creation by	Small RNA library, preparing for high-throughput	common mistakes that break sterility, 4-5
recombinase-mediated cassette	sequencing, 299–309	filter sterilization techniques (protocol), 9–10
	1 0	
exchange (protocol), 344–351	Smear, making cell, 455	materials, 9
materials, 344-346	Snapback DNA, 251	method, 10
method, 346–351, 346f	SNR. See Signal-to-noise ratio	in mammalian cell culture, 16-18
creation of transgenic mice, 351	SOB (recipe), 87	sterile pipetting and pouring techniques
culture of ES cells before electropora-	SOC (recipe), 88	(protocol), 6–8
tion, 347–348	Society for In Vitro Biology, 18	discussion, 8
electroporation of transgenes into KH2	Sodium acetate (recipe), 189	materials, 6
ES cells, 348–349	Sodium bicarbonate, in cell culture media, 19	method, 6–8
feeder cell preparation, 347	Sodium dodecyl sulfate. See SDS	opening and pipetting with individually
plating irradiated feeder cells, 347	Sodium phosphate dibasic, 18	wrapped disposable pipettes, 7–8
preparation of gelatin-coated ES culture	Solid phase reversible immobilization (SPRI) beads,	pipetting with packaged disposable
plates 346-347	316-318 321	ninettes 7

Sterile technique (Continued)	imaging setup, 502, 502f	microarray slide hybridization using fluores-
pipetting with reusable glass pipettes,	materials, 501–502	cently labeled cDNA, 274–279
6-7	method, 503–505	packaging shRNA retroviruses, 338–341
pouring, 8 technique tips, 4	analysis, 505 choosing photoactivation and imaging	preparation of fluorescent-dye-labeled cDNA from RNA for microarray
when to use, 3–4	wavelengths, 503	hybridization, 269–273
working sterilely in a biosafety cabinet	neuronal transfection for in vitro and in	preparation of small RNA libraries for high-
(protocol), 13–15, 15t	vivo imaging preparations, 503	throughput sequencing, 299–309
discussion, 14-15	photoactivation, 503-504, 504f	scanning microarray slides, 280-284
materials, 13	preparation of PA-GFP-tagged synaptic	tips on hybridizing, washing, and scanning
method, 13-14	proteins, 503	Affymetrix microarrays, 285–290
Stevens, Beth, 2	time-lapse imaging of fluorescence decay,	Transfectam (DOGS), 355–356, 356t
Stir bars, 177	504–505 recipes, 506	Transfection calcium phosphate, 407, 428
Stoke's Law, 460 Storage of bacteria, 65	recipes, 500	cotransfection of packaging-defective HSV-1
freezing bacteria for long-term storage	т	helper DNA and vector DNA,
(protocol), 78–80	T	442–443, 442t, 443f
reviving a frozen culture, 79	TAE (recipe), 116, 127, 171, 402	DNA transfection by electroporation
Strand-specific RNA-Seq (ssRNA-Seq)	Taguchi method, 98 Taq polymerase	(protocol), 364–366
conventional RNA-Seq versus, 319-320, 320f	antibody to, 96	materials, 364
library preparation (protocol), 313–322	forms inactive at lower temperature, 96	method, 364–365
discussion, 319	wax-encapsulated, 96	recipes, 366 DNA transfection mediated by lipofection
different multiplex sequencing strat- egies for GAII and HiSeq2000	T7 bacteriophage polymerase promoter, 246	(protocol), 355–357, 356t
instruments, 321	TBE buffer (recipe), 127, 171	materials, 355–356, 356t
false antisense read derived from uracil-	TBE electrophoresis buffer $(10 \times)$ (recipe), 238	method, 356–357
minus RNA, 320	TBS (pH 7.5) for HSV (recipe), 439 T11D7 hybridoma line, 22	in imaging synaptic protein dynamics using
purification and size selection on mag-	T4 DNA ligase, 317, 335	photoactivatable green fluorescent
netic beads, 320-321	T4 DNA ligase buffer ($10 \times$) (recipe), 336	protein (protocol), 503
recipes, 322	T4 DNA polymerase, for blunting of DNA ends, 162	lentiviral vectors for retrograde delivery of
strand-specific RNA-Seq vs. conven-	TE buffer (10×) (recipe), 83, 105, 133, 156, 189	recombinases and transactivators (protocol), 403–409, 407f
tional RNA-Seq, 319–320, 320f using phosphorothioate oligos to pre-	TE buffer for RNA isolation (recipe), 189	neuronal transfection for in vitro and in vivo
vent PCR amplification of adapter	Telomerase, abnormal expression in HeLa cells, 2 Telomeres, shortening of, 2	imaging preparations using
dimers, 321	Terrific broth (recipe), 84	photoactivatable green fluorescent
materials, 313-314	Tet-CMV promoter, 336, 350	protein, 503
method, 314-319, 315f	Tetracycline-inducible systems, 490	overview, 353-354
dA-tailing, 316	Tetracycline (15 mg/mL stock solution) recipe, 68t	piggyBac transposon-mediated cellular
end-repair, 316	Tetracysteine tag, 362	transgenesis in mammalian
first-strand cDNA synthesis, 315–316 general procedure for using AMPure	Tg, 224, 226t Thermal cycler, programming, 95	forebrain by in utero electroporation (protocol), 367–
beads, 318–319	3T3 test cells for infection (recipe), 401	375, 369f, 370t, 374f
mix barcoded libraries for multiplex	Thy-1, on retinal ganglion cells, 22, 28f	discussion, 374-375
sequencing, 318	Thy1:18 ChR2-YFP transgenic mice, mapping	background, 374-375
PCR enrichment, 317–318, 318f	anatomy to behavior in, 594–605	expected results, 374f, 375
polyA RNA isolation and fragmenta-	Thy1.2 promoter, in Brainbow constructs, 580	materials, 367–368
tion, 314–315 second-strand synthesis with dUTP, 316	Thyroxine (T3), 23 Thyroxine (T3) stock (4 μg/mL) (recipe), 34	method, 368–372 animal preparation, 370–371
triple-SPRI purification and size selec-	Time-lapse imaging of fluorescence decay, 504–505	helper and donor plasmid combina-
tion, 317, 317f	Tissue culture, 1, 354	tions, 370, 370t
Y-shape adapter ligation, 316-317	TM-TPS, 356t	surgical station preparation, 368
Streaking and stabbing slants using isolated	TNA (trinitriloacetate), 176	suturing and animal recovery, 372
colonies, 72	TN-XXL, 510, 512–513, 512t	in utero electroporation, 371–372
Streaking bacteria over agar plates, 71–72, 71f	Toluidine blue, RNA staining with, 214	in utero electroporation setup, 368–
Streptomycin, 20 Streptomycin (100 mg/mL stock solution) recipe, 68t	Tophat, 329 Touchdown PCR, 94–95	370, 369f troubleshooting, 372–373
Stripping RNA from membrane, 220	TOZ.1 vector, 432, 437f, 438	single cell/cellular subregion-targeted
Subculturing bacteria, 65	TPE (recipe), 127	phototransfection (protocol),
Sucrose (20%) (recipe), 425	T4 polynucleotide kinase, 262, 301	376-380, 378f-379f
Sucrose (60%) (recipe), 425	Tracking dye (recipe), 215	discussion, 379-380
Sucrose gradients, for concentration and purifica-	Transactivators, lentiviral vectors for retrograde de-	materials, 376–377
tion of rabies viral and lentiviral	livery of (protocol), 403–409, 407f	method, 377–379, 378f
vectors (protocol), 421–426, 424f Supplements, in cell culture media, 20	Transcript assembly, 329 Transcriptome analysis protocols	aligning multiphoton beam in the microscope, 377
Surgery Surgery	creating an miR30-based shRNA vector,	configuring parameters for maximal
establishing fiber-optic-based optical neural	333–337	cell viability, 378, 378f
interface (ONI) protocol, 534-539	creating transgenic shRNA mice by	phototransfection of neurons with
laser capture microdissection (LCM), 191,	recombinase-mediated cassette	mRNA, 378-379, 379f
195–196	exchange, 344–351	recipes, 380
SV2 promoter, 489	fragmentation of whole-transcriptome RNA	single-cell electroporation of DNA for Xenopu
SYBR Gold (recipe), 126, 133 Synaptic protein dynamics, imaging using	using <i>E. coli</i> RNase III, 296–298 high-throughput Illumina strand-specific RNA	neurons, 543–544 transfection of mammalian cells with
photoactivatable green fluorescent	sequencing library preparation,	fluorescent protein fusions
protein (protocol), 501–507	313–322	(protocol), 358–363
discussion, 505–506	infection of mammalian cells with retroviral	discussion, 361–362
uses of method, 506	shRNAs, 342–343	functionality of fusion protein, 361–36.
in vitro and in vivo preparation, choosing,	methods for processing microarray data,	location of fusion protein, 361
505-506	291-295	materials, 358–359

Transfection (Continued)	dynamic range, 486	method, 384-399, 384f-385f, 387f,
method, 359-361	genetically encoded calcium indicators (GECIs)	394f-397f
antibiotic selection (day 4), 360	and, 515	bicistronic insert and lentiviral vector
colony transfer and selection (days	illumination efficiency, 483	backbone preparation, 384–391,
14–21), 360	imaging speed, 485–486	384f-385f, 387f
DNA preparation and transfection	imaging synaptic protein dynamics using	bicistronic lentiviral vector production,
(day 1), 359	photoactivatable green fluorescent	391-394, 394f
expanding stable clones, 361 screening (days 21–28), 360	protein (protocol), 501–507 photobleaching, 483–484	concentrating lentiviral supernatants, 398
trypsinization and splitting the cells	point-spread function (PSF), 484	harvesting bicistronic viral supernatants
(day 3), 360	single-cell electroporation of <i>Xenopus</i> tadpole	and infecting cells, 396–398, 397f
washing transfected cells (day 2), 359	neurons, 540, 547, 549	plasmid maps, 385f
recipes, 363	two-photon imaging of microglia in mouse	transfecting 293FT packaging cells for
of 293FT packaging cells for virus production,	cortex in vivo (protocol), 583–593	virus production, 394–396,
394-396, 395f-396f	discussion, 590-591	395f-396f
Transformation	applications, 591	viral titer determination using fluores-
of competent E. coli using calcium chloride	choosing an optical window type,	cent microscope, 398-399
(protocol), 85–88	590-591	generation of replication-competent and
materials, 85	data analysis, 591	-defective HSV vectors, 432–440,
method, 86 recipes, 887–88	potential effect of imaging, 591	437f-438f
in generation and analysis of lentivirus	materials, 583–585, 584f	discussion, 437–438
expressing a 2A peptide-linked	method, 585–588, 586f, 588f	materials, 432–433
bicistronic fluorescent construct	recipe, 592	method, 434–437, 437f
(protocol), 391–393	setup, 584, 584f	construction of recombination virus,
low efficiency of, 115	troubleshooting, 588–589	434–436
Transgenic shRNA mouse creation by recombinase-		isolation of viral DNA for transfection,
mediated cassette exchange	U	434
(protocol), 344–351	UCSC Genome Browser, 294, 330–331	viral stock preparation and purification; 436, 437f
materials, 344-346	Uranyl acetate, 497	recipes, 439
method, 346-351, 346f	Urea loading dye (recipe), 244	troubleshooting, 437
creation of transgenic mice, 351	U.S. Department of Health and Human Services	lentiviral vectors for retrograde delivery of
culture of ES cells before electroporation,	hazard classification system, 61	recombinases and transactivators,
347–348	UV light	403-409, 407f
electroporation of transgenes into KH2 ES	cross-linking DNA to membrane, 132	discussion, 406-408, 407f
cells, 348–349	cross-linking in ChIP experiments, 143	materials, 403-404
feeder cell preparation, 347 plating irradiated feeder cells, 347	cross-linking of cells, 258-259	method, 405-406
preparation of gelatin-coated ES culture	cross-linking of tissues, 257-258	recipe, 408
plates, 346–347	cross-linking RNA to membrane, 218	rabies viral vectors for monosynaptic tracing
selection of ES cell clones containing	quantitation of DNA and RNA by ethidium	and targeted transgene expression
integrated shRNA cassettes, 349	fluorescence emission, 90	in neurons, 410–420, 413f
Southern blotting for validation of clones,		discussion, 418–419
350-351	V	materials, 410–412
testing for shRNA expression, 350		method, 412–418, 413f
testing neomycin sensitivity, 349	Vacuum oven, fixing DNA to membrane, 131	amplification from supernatants to
Transmission electron microscopy (TEM), 452	VChR1, 528t, 529 Vesicular acetylcholine transporter (vAChT), 110f	titered stocks, 414–415 amplification from titered stocks to
Transposon, piggyBac, 367–375, 369f, 370t, 374f	Vesicular stomatitis virus glycoprotein (VSV-G),	more titered stocks, 415
T1 ribonuclease, 259–260	338–340, 342–343	flowchart, 413f
Tricaine methanesulfonate, 548	in lentiviral vectors, 404, 406–407	rescue from cDNA, 412–414
Trimethoprim (10 µg/mL stock solution) recipe, 68t	in rabies viral vectors, 411, 417–418	stock production for concentration and
Trinitriloacetate (TNA), 176	VGAT promoter, 555	use in vivo, 415–418
Tris-glycine buffer (10×) (recipe), 239	Viral gene transfer protocols, 381–445	recipe, 419
TRIzol reagent, 178 TrkB, 23	concentration and purification of rabies viral	stock production for concentration and use
T4 RNA ligase, 261–262, 264	and lentiviral vectors, 421-426,	in vivo
Trolox, 466	424f	EnvA-enveloped version, 416-417
Trypsinization	discussion, 425	RVG-enveloped version, 415-416
in purification and culture of retinal ganglion	materials, 421-422	VSVG-enveloped version, 417–418
cells from rodents (protocol), 31	method, 422–425, 424f	stable producer cell lines for adeno-associated
in purification of rat and mouse astrocytes by	recipes, 425–426	virus (AAV) assembly, 427–431,
immunopanning (protocol), 45	construction and packaging of herpes simplex	429f-430f
in retinal ganglion cell purification and culture	virus/adeno-associated virus	materials, 427–428 method, 428–430, 429f–430f
from rodents (protocol), 31	(HSV/AAV) hybrid amplicon	generation of stable packaging lines,
in transfection of mammalian cells with	vectors, 441–445, 442t, 443f discussion, 444–445	428–429
fluorescent protein fusions (protocol), 359, 360	materials, 441–442	generation of stable producer clones,
T1 sequencing buffer (recipe), 244	method, 442–444, 442t, 443f	430
Tungsten light, 459	cotransfection of packaging-defective	screening clones for rep and/or cap
Twist1, 224, 226t	HSV-1 helper DNA and vector	DNA, 429–430, 430f
2A peptide-linked sequences, generation and anal-	DNA, 442–443, 442t, 443f	selection procedure, 429f
ysis of lentivirus expressing (pro-	harvesting packaged vectors, 443-444	recipes, 431
tocol), 381–402, 382f, 384f–385f,	titration of amplicon stocks, 444	troubleshooting, 430
387f, 394f, 396f-397f	generation and analysis of lentivirus expressing	Virus. See also Viral gene transfer protocols; specific
293FT cells for transfection (recipe), 400	a 2A peptide-linked bicistronic	viruses
Two-photon fluorescence microscopy	fluorescent construct, 381–402,	infusion into a fiber-optic-based optical neural
digital scanned laser light sheet fluorescence	382f, 384f–385f, 387f, 394f–397f,	interface (protocol), 534–539, 5371
microscopy (DSLM) compared,	396f-397f	titer determination using fluorescent
482-486	materials, 381-384, 382f	microscope, 398-399

Voltage. See Membrane voltage	materials, 558-559	in vivo time-lapse imaging of neuronal
Voltage-sensing fluorescent proteins (VSFP), 519t,	method, 559-560, 560f	development in Xenopus, 552-555,
520-522, 520f	recipe, 562	552–557, 554f
Voltage-sensors, 518-525, 519t, 520f	single-cell electroporation, 540-551, 554f	fluorescent dextrans, 552-553
Volvox carteri, opsins from, 528t, 529	efficiency, factors influencing,	genetic labeling by fluorescent protein
VSFP1, 519t, 520-521	542-543	expression, 553–555, 554f
VSFP2, 519t, 522	electrical stimulus parameters, 542	image analysis and morphometry, 555-
VSFP3.1, 519t, 522	glass micropipettes, 542	557, 556f
VSV-G. See Vesicular stomatitis virus	microscopy, 542–543	imaging labeled neurons, 555
glycoprotein	implementation, 543-545, 544f	labeling neurons, 552–555
07.1	coelectroporation of fluorescent dye	lipophilic vital dyes, 553
	space fillers with morpholinos or	Xenopus tadpole rearing solution
W	peptides, 544f, 545	(recipe), 550
Wash buffer A (recipe), 222 Wash buffer B (recipe), 222 Wash buffer C (recipe), 222 Wash buffer D (recipe), 222 Washing buffer for ssRNA-Seq (recipe), 322 Water, RNase-free, 177 Wescodyne, 17 Wright's stain, 460	SCE of DNA for neuronal transfection, 543–544, 544f SCE of fluorescent dyes, 544, 544f SCE within <i>Xenopus</i> tadpole optic tectum, 543 microscopy of, 542–543 principles of, 540–541 protocol, 546–551 discussion, 550 expected results, 550	XFPs, in <i>Brainbow</i> mouse strategies, 575–580, 576f X-gal staining solution for HSV (recipe), 439 Xylazine, 370, 535 Xylene, for cleaning objective lens, 453, 458 Y YC3.60, 510, 512
X	limitations and special considerations, 550	Yeast, 63 YT (recipe), 84
Xenopus	materials, 546–547, 547f	YT medium (2×) (recipe), 400
bulk electroporation of retinal ganglion cells	method, 548–549	11 medium (2×) (recipe), 400
in live <i>Xenopus</i> tadpoles (protocol),	setup, 547f, 548	
558–562	troubleshooting, 549–550	Z
discussion, 560–561, 561f		Zn ²⁺ , chelation of, 176
discussion, 500–501, 5011	setup, 541–542, 541f, 547f, 548	ZII , CHCIAUOII OI, 1/0