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Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis
(Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils,
both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating
it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often
exuberantly delivered under low oxygen tension. Further pressure is applied by withholding
divalent Fe’*, Mn**, Cu?*, and Zn?", as well as by metabolic privation in the form of carbon
needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubig-
uinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autopha-
gic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that
sterilization is rarely complete, although sufficient to ensure most people infected with this

airborne bacterium remain disease-free.

ells constitute the basic unit in biology.

They safeguard and transmit genetic infor-
mation, exchange gases, assimilate nutrients,
and compartmentalize their enzymatic machin-
ery to concentrate activities that share a com-
mon function. Beyond these servoregulatory
duties, cells also deploy host defense factors to
monitor their structural integrity and protect
their inner sanctity from infection by the out-
side world. This universal system of self-defense
is known as cell-autonomous immunity (Beu-
tler et al. 2006; Kim et al. 2012a; MacMicking
2012; Randow et al. 2013).

Cell-autonomous immunity operates across
all three domains of life where it defends against
facultative and obligate intracellular pathogens
(Randow et al. 2013). It is particularly effective
against microorganisms engaged in accidental

or fleeting interactions with their host; however,
durable pathogens necessitate multiple intracel-
lular defense programs to overcome microbial
counterstrategies (Staskawicz et al. 2001). One
such example is Mycobacterium tuberculosis
(Mtb), the causative agent of tuberculosis (TB).
It survives much of the microbicidal onslaught
triggered inside human phagocytes via numer-
ous adaptive and exaptative mechanisms (Mac-
Micking 2008). These mechanisms reflect a close
and long-standing association with its host. In-
deed, paleogenetic evidence suggests Mtb has
evolved alongside as well as within humans for
at least 70,000 years (Comas et al. 2013).

Such tactics currently enable Mtb to persist
within an estimated third of the world’s popu-
lace. Here it causes disease in ~10% of people
infected. For the remaining 90% of cases, how-
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ever, host immunity likely contains and, in
some cases, naturally eradicates Mtb (McKinney
et al. 2001; Cobat et al. 2009). Autopsy studies
conducted in the preantibiotic era, for example,
found pulmonary lesions were often sterilized
in latently infected individuals dying of nontu-
berculous causes (see McKinney et al. 2001 and
references therein). Similar outcomes were re-
cently reported for cynomolgus macaques (Lin
et al. 2014), which together with Metchnikoft’s
original observations in rat macrophages and
Lurie’s classic studies of inbred rabbits encap-
sulate the idea that mycobactericidal activities
may exist across several mammalian species
(Metchnikoff 1905; Lurie 1964). How microbial
killing is enacted and what molecular mecha-
nisms are used for Mtb clearance or stasis re-
main central questions in mycobacterial patho-
genesis. Potential antitubercular mechanisms
are discussed below.

CELL-AUTONOMOUS DEFENSE
AGAINST Mtb

Constitutive versus Inducible Programs

Abasal repertoire of host defense factors provide
some measure of protection against Mtb; how-
ever, resistance is often more effective in cells
preactivated by cytokine or Toll-like receptor
(TLR) signaling (Fig. 1). Here multiple defense
genes are induced within 0.5—-6 h of stimulation
(MacMicking 2012). Notably, the order of acti-
vation and infection appears critical, because
resting or naive macrophages infected before
immune stimulation allows Mtb time to inter-
fere with host signaling events such as STAT1
binding its transcriptional coactivators, CBP
and p300 (Ting et al. 1999), or blocking PI3K-
dependent trafficking (Vergne et al. 2003). Both
are needed to inhibit mycobacterial replication.

Likewise, the magnitude and success of cell-
autonomous immunity depends on which im-
munoreceptor is engaged. Stimulating C-type
lectin receptors dectin-1 or Mincle with Mtb
mannosylated lipoarabinomannan or trehelose
dimycolate, respectively, induces a limited de-
fense repertoire that fails to control the pathogen
(Ishikawa et al. 2009; Betz et al. 2011; Marakalala

etal.2011; Dasetal. 2013; Heitmann etal. 2013).
In contrast, activation with interferon-y (IFN-
v) or tumor necrosis factor-a (TNF-a), elicits
hundreds of genes that can curtail mycobacterial
growth (Ehrtetal. 2001; Nau et al. 2002; Tailleux
et al. 2008; Vogt and Nathan 2011).

Mtb-dependent signaling further enriches
the host defense repertoire, either through direct
transcription of effector genes by pattern-recog-
nition receptor (PRR) ligation or after autocrine
TNF-a and interleukin-1 beta (IL-1B) signaling
(Ehrt et al. 2001; Nau et al. 2002; Vogt and Na-
than2011). Human monocytes and mouse mac-
rophages regulate approximately 300—700 genes
within 12—24h of Mtbexposure (Ehrtetal. 2001;
Ragno et al. 2001; Nau et al. 2002). Similar tran-
scriptional plasticity occurs in human alveolar
macrophages (AMs) and dendritic cells (Tail-
leux et al. 2008). This expression profile may
reach as many as 1300 genes when IFN-v is also
present (Ehrtetal.2001). Thus Mtb plus classical
Th1 cytokines like IFN-vy are potent synergistic
stimuli for remodeling the transcriptome of
phagocytic cells. In combination they enlarge
thesuite ofhost proteins available for cell-auton-
omous defense, a recurring theme for many in-
ducible programs directed against major human
pathogens (MacMicking 2012). Indeed, resis-
tance is most effective when multiple activating
stimuli are present, consistent with theideathata
single stimulus may be necessary although not
always sufficient to eradicate Mtb (Shietal. 2003;
Fabri et al. 2011; Vogt and Nathan 2011).

IFN-yR-Induced Programs

Discovery of IFN-vy as the principal macro-
phage-activating factor (Nathan et al. 1983,
1984; Pace et al. 1983) soon led to reports of
its effectiveness against Mtb in monotypic cell
culture (Rook et al. 1986a; Flesch and Kauf-
mann 1987). These in vitro activities likely op-
erate in vivo given loss-of-function mutations
in the IFN-v signaling cascade confer profound
susceptibility to Mtb and, more commonly, dis-
seminated nontuberculous mycobacteriosis in
both humans and mice (Cooper et al. 1993;
Flynn et al. 1993; Casanova and Abel 2002). A
congenital syndrome termed Mendelian sus-
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Figure 1. Immunoreceptor signaling for mobilizing the major cell-autonomous effector programs against Mtb. In
addition, new NLR, VDR-, and P2XR-induced activities are emerging (see text). Mtb ligands that elicit TLR signal-
ing include mannosylated lipoarabinomann, phosphatidylinositol mannosides (PIMs), and the 19-kDa lipopro-
tein. These pathways synergize to induce distinct as well as overlapping signatures of effector proteins for bacterial
restriction as shown. For schematic simplicity, receptors are depicted as single chains instead of their trimeric,
tetrameric, and heteromeric forms (especially in the case of the TLRs). Adaptor and transcription factor abbrevi-
ations: IRE interferon regulatory factor; JAK, Janus kinase; NF-kB BM, NF-kB binding motif; STAT1, signal
transducer and activator of transcription 1; TIRAP, toll-interleukin 1 receptor (TIR) domain containing adaptor
protein; TRADD, tumor necrosis factor receptor type 1—associated DEATH domain; TRAE TNF receptor—associ-
ated factor; TRAM, TRIF-related adaptor molecule; TRIE TIR-domain-containing adapter-inducing interferon-.

ceptibility to mycobacterial disease (MSMD)
reveals impaired antimycobacterial immunity
in patients with hypomorphic or nullizygous
IFNGR, STAT1, and IRFS8 alleles, as do muta-
tions in loci that encode IFN-induced effectors
such as ISG15 or CYBB (Zhang et al. 2008; Bu-
stamante et al. 2011; Hambleton et al. 2011;
Bogunovic et al. 2012).

Genetic lesions in the IFN-vy signaling
cascade provide strong support for its role in
antitubercular defense. Pharmacologic comple-
mentation further reinforces it. Here aerosol-
ized recombinant IFN-y can alleviate bacillary
burdens in patients with antibiotic-resistant
Mtb strains and mobilize bacteriostatic pro-
grams in human alveolar macrophages ex vivo
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(Condos et al. 1997; Bonecini-Almeida et al.
1998). Concordant results are seen in long-term
differentiated human PBMCs activated with
IFN-y under low physiologic oxygen (5%—
10%) that may begin to approach hypoxic con-
ditions found in some pulmonary and extra-
pulmonary tissue granulomas (Vogt and Nathan
2011). Importantly, the tuberculostatic activi-
ties of IFN-y can be augmented by other
stimuli. These include TNF superfamily mem-
bers (TNF-a, CD40L), IL-1R/TLR, and NLR
(NOD-like receptor) agonists or bioactive me-
tabolites such as vitamin D5 (Fabri et al. 2011;
Vogt and Nathan 2011; Pilli et al. 2012; Jayara-
man et al. 2013; Klug-Micu et al. 2013). Their
synergistic effects are discussed below.

TNFR-Induced Programs

Besides their crucial role in granuloma forma-
tion (Flynn et al. 1995; Bean et al. 1999), mem-
bers of the TNF superfamily directly stimulate
cell-autonomous immunity to help contain Mtb
(Chanetal. 1992; Klug-Micuetal. 2013). TNF-a
enhances IFN-vy-induced macrophage pro-
gramming for Mtb clearance, a synergy which
provides several advantages: (1) diversifying the
host gene repertoire through alternate trans-
cription factor usage; (2) heightened gene ex-
pression from promoters harboring transcrip-
tion factor-binding sites for both pathways;
and (3) lowering the immune activation thresh-
old, a change brought about by shared preexist-
ing components (Fig. 1). This latter point is
especially germane given the relative paucity of
IFNGRs (4000—12,000/cell”") on the human
macrophage surface (Pace et al. 1983; Finbloom
et al. 1985). TNFRI is likewise expressed at low
levels for capturing soluble TNF-a to restrict
Mtb growth rather than the nonprotective
TNFR2 isoform that instead engages mem-
brane-bound ligand (Jayaraman et al. 2013).
The other two benefits of this synergy
emerge when regulation of the antitubercular
enzyme, inducible nitric oxide synthase (NOS2),
is considered (Chan et al. 1992; MacMicking
et al. 1997a; Bekker et al. 2001; Nathan 2006).
NOS2 transcription requires IFN-y-induced
STAT1 binding to y-activated sites (GASs) that

is increased by NF-«kB docking to its own sites
within the NOS2 promoter after TNF-a or li-
poarabinomannan stimulation (MacMicking
et al. 1997a; Chan et al. 2001. In addition,
TNF-a elicits GTP cyclohydrolase 1 that fur-
nishes tetrahydrobiopterin (BH,) as an essential
cofactor for NOS2 catalysis and induces argini-
nosuccinate synthetase 1 and cationic amino
acid transporter 2 (CAT-2) to regenerate and
import the NOS2 substrate, 1-arginine, respec-
tively (Bogdan 2001; Qualls et al. 2012). Thus
cooperation between TNF-a and IFN-v regu-
lates transcriptional and posttranslational
events for antitubercular defense at the level of
the individual cell.

Macrophage reprogramming by another
TNF superfamily member, CD40L, also impacts
Mitb survival. Human monocytes stimulated
with CD40L, alone or in combination with
IFN-vy, induce CYP27bl-hydroxylase, which
converts the vitamin Dj precursor, 25-hydroxy-
vitamin D3 (25Dj3), into bioactive 1,25-dihy-
droxyvitamin D (1,25D;) (Klug-Micu et al.
2013). Subsequent 1,25D binding to the vita-
min D receptor (VDR) elicits antimicrobial
peptide expression and autophagy, both potent
effector mechanisms targeting mycobacterial
replication (Thoma-Uszynski et al. 2001; Gu-
tierrez et al. 2004; Liu et al. 2006, 2007; Singh
et al. 2006; Yuk et al. 2009; Ponpuak et al. 2010;
Fabri et al. 2011; Pilli et al. 2012).

IL-1R-, TLR-, and NLR-Induced Programs

Members of the IL-1/TLR family stimulate dis-
tinct intracellular programs following cognate
ligand interaction to combat TB. For IL-1 recep-
tor (IL-1R) signaling, both IL-1 and IL-1a lim-
it mycobacterial growth in murine macrophages
via a MyD88-dependent pathway (Jayaraman
et al. 2013). A similar IL-1B-dependent profile
emerges within human monocyte-derived mac-
rophages. Here IL-1p up-regulates TNFR1 and
promotes autocrine signaling via TNF-a release,
along with caspase 3—dependent apoptosis
(Jayaraman et al. 2013). IL-1f can also elicit
autophagic killing via a Tank-binding kinase-1
(TBK-1)-dependent pathway (Pilli et al. 2012),
suggesting multiple effectors are deployed
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downstream of IL-1R to restrict Mtb growth.
Such effects presumably operate within intact
hosts because IL-1B- and IL-1R1-deficient
mice display marked vulnerability to aerogenic
Mib challenge (Mayer-Barber et al. 2010).

Like the IL-1R cascade, TLRs 1, 2, and 4
mobilize multiple effectors as part of the anti-
tubercular arsenal. Engagement of TLR1/TLR2
heterodimers with the 19-kDa Mtb-derived li-
poprotein promotes a novel NOS2- and TNF-
independent pathway in human macrophages,
whereas the same lipopeptide induces a NOS2-
dependent mechanism in mouse cells (Thoma-
Uszynski et al. 2001). This novel human path-
way involves CYP27b1-hydroxylase to produce
1,25D; for binding the VDR, which in turn
elicits cathelicidin (hCAP-18/LL-37) and de-
fensin-4 (DEF4) antimicrobial peptides for tu-
berculostasis (Liu et al. 2006, 2007). Because the
latter cascade also induces autophagy, it may
overlap with signals provided by IFN-vy, CD40,
and IL-1B at a common juncture downstream
(Fabri et al. 2011; Klug-Micu et al. 2013).

Autophagic clearance of Mtb invoked by
TLR4 stimulation in human and mouse macro-
phages requires TRIF (Toll-interleukin-1 recep-
tor domain-containing adaptor-inducing inter-
feron-B) adaptor signaling, unlike IL-1@ that
relies on MyD88 (Xu et al. 2007). Use of a dif-
ferent adaptor helps widen the TLR transcrip-
tional response to encompass IRF3-dependent
genes. In humans, genetic mapping has un-
earthed numerous TLR4 SNPs that segregate
with TB in ethnically diverse subjects, suggest-
ing this TLR4-TRIF pathway operates across a
broad swathe of the global population (Velez
et al. 2009; Shah et al. 2012). Genetic TB asso-
ciations have also been noted for TLRs 1 and 2
along with their signaling adaptors (Hawn et al.
2006; Thuong et al. 2007).

Recent studies have shown members of the
NLR family may mobilize intracellular immu-
nity to control Mtb growth. NOD2 detects mur-
amyl dipeptide (MDP) that is N-glycolylated in
mycobacteria to elicit TNF-a secretion as part
of the defense profile in mouse macrophages
(Coulombe et al. 2009). Human AMs stimulat-
ed with MDP also elicit IL-1 and TNF-a plus
the antimicrobial peptide cathelicidin and au-

Intracellular Defenses to M. tuberculosis

tophagy-related defense protein, immunity-re-
lated GTPase M (IRGM) (Juarez et al. 2012).
Here MDP promotes IRGM, ATGI16L, and
LC3B recruitment to Mtb phagosomes, suggest-
ing NOD?2 signaling governs both transcrip-
tional and autophagic defense to this pathogen.
Gain-of-function NLRP3 and CARDS8 muta-
tions cooperatively limit Mtb in human macro-
phages (Eklund et al. 2014). Hence several NLRs
and related adaptors contribute to bacterial re-
striction within infected cells.

VDR- and P,XR-Induced Programs

Besides classical cytokine and PRR signaling,
two other inducible programs deserve mention
within the context of cell-autonomous immu-
nity to Mtb: VDR and purinergic receptor sig-
naling. Early studies reported that 1,25D; was
crucial for IFN-y-induced tuberculostasis in
human macrophages; this effect was attributed
to 1,25D; promoting macrophage differentia-
tion (Rook et al. 1986b; Crowle et al. 1987).
Subsequent work, however, has delineated a cir-
cuitry whereby CYP27b1-hydroxylase expres-
sion and 1,25D; production are induced by
IL-15 following IFN-y or TLR1/2 stimulation
(Fabri et al. 2011). VDR signaling in turn elicits
cathelicidin to activate Beclin-1 and Atg5 for
autophagosomal capture of mycobacteria (Yuk
et al. 2009). Such activities may impact TB out-
comes in people because lower levels of serum
1,25D correlate with susceptibility, with VDR
disease-related polymorphisms in linkage for
some African and Asian populations (Bellamy
et al. 1999; Wilkinson et al. 2000).
ATP-dependent stimulation of P2 puriner-
gic receptor subtypes has likewise been strongly
implicated in macrophage-mediated Mtb kill-
ing. In human macrophages, P2X7 activates cy-
tosolic Ca®" release and phospholipase D for
maturation of Mtb phagosomes (Kusner and
Adams 2000; Fairbairn et al. 2001; Kusner and
Barton 2001). Subtypes other than P2X7, how-
ever, appear to stimulate NOS2-mediated kill-
ing in murine cells (Sikora et al. 1999). Because
a number of P2X7R polymorphisms associate
with TB susceptibility in the human popula-
tion, this pathway likely influences disease de-
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velopment in its natural setting (Fernando et al.
2007; Sharma et al. 2010; Areeshi et al. 2013).
In sum, multiple receptors induce intracel-
lular programs to protect the host cell from Mtb
infection. These signals originate from IFN-yR,
TNFR, IL-1R, TLR, NLR, VDR, and P2XR com-
plexes after ligand binding primarily at the plas-
ma membrane or in the cytosol. How their
downstream effectors subsequently operate and
the mechanisms they deployare discussed below.

CELL-AUTONOMOUS ARSENAL FOR
DEFENSE AGAINST Mtb

Cytotoxic Gases: Reactive Oxygen Species
and Nitrogen-Centered Free-Radical Species

Production of cytotoxic gases is a major com-
ponent of antimicrobial arsenals in all aerobic
organisms (Nathan and Shiloh 2000). Reactive
oxygen species (ROS) and nitrogen-centered
free-radical species (RNS) show distinct chem-
ical properties—oxidizing power, penetrative
diffusion limits, lipophilicity—well-suited for
killing a variety of facultative bacteria including
Mtb (Klebanoff 1999; Nathan and Shiloh 2000).
ROS and RNS typically possess low Stokes radii,
are highly lipophilic, and electroneutral; thus
they are small enough to bypass structural bar-
riers that impede the access of larger host mac-
romolecules and sufficiently permeable to dif-
fuse across the bacterial membrane (Klebanoff
1999). Other chemical properties, notably ex-
tended diffusion limits for some RNS, allow
them to protect neighboring cells (MacMicking
2012). Carbon monoxide (CO) has also been
recently touted as an emerging bactericidal
agent, although whether it is generated in suffi-
cient amounts to act as a genuine mycobacterial
poison in addition to its role as a sensory cue
(Shiloh et al. 2008) has yet to be determined.

Oxidant Stress

Aerobic organisms use allotropic dioxygen as a
substrate for generating superoxide (Oz_ ) via
oxidoreductases and as a by-product of electron
(e ) transport in mitochondria to combat in-
fection (Klebanoff 1999; MacMicking 2012).

Single e additions yield, respectively, hydrogen
peroxide (H,O,) and the hydroxyl radical
(OH-), both powerful oxidants capable of dam-
aging mycobacterial DNA, lipids, and hemo-
proteins (Chan et al. 1992; Nathan and Shiloh
2000; Vilcheze et al. 2013). Moreover, within
phagolysosomes, elevated levels of O, (Podi-
novskaia et al. 2013) undergo spontaneous dis-
mutation at low pH to generate H,0, that en-
hances lysosomal killing. Hypochlorous acid
(HOCI") produced by myeloperoxidase-cata-
lyzed oxidation of chloride by H,0O, in neutro-
phils could also target Mtb internalized from
infected macrophages (Yang et al. 2012). Here
Mitb expresses methionine sulfate reductases
that may partly mitigate this damage (Lee et al.
2009). Indeed, Mtb detoxifying enzymes (e.g.,
catalases, SODs, peroxiredoxins) limit the over-
all effectiveness of ROS as a sole agent that could
regain toxicity when other bactericidal agents
help disable these antioxidant systems.

Large quantities of ROS are produced
within phagocytic cells via the NADPH oxidase
2 (NOX2) isoform encoding the flavocyto-
chromeysss heavy chain subunit (gp91P"%;
CYBB gene) of the phagocyte oxidase, which
generates the respiratory burst (Nathan and
Shiloh 2000; MacMicking 2012) (Fig. 2). Con-
genital X-linked CYBB mutations lead to re-
current TB and “BCG-osis” in patients with
defects preferentially manifest in macrophages
rather than monocytes or granulocytes (Bus-
tamante et al. 2011). Additional mutations in
other NADPH oxidase subunits yield a collec-
tive syndrome—chronic granulomatous disease
(CGD)—that also appears to predispose to TB
(Lau et al. 1998). Mtb susceptibility is less pro-
nounced in mice with targeted disruptions in
either gp91P"* or gp47°"** subunits (Adams
etal. 1997; Cooper et al. 2000); however, relative
vulnerability increases when Mtb mutants lack-
ing KatG are used, reinforcing the importance
of pathogen detoxification systems (Ng et al.
2004).

NADPH oxidase is composed of two mem-
brane-associated (gp91°"*%, p22P"°%) and three
cytosolic subunits (p67PP%, pa7Phox, p4oPhox),
IFN-y increases gp91P"* and p22P™* mRNA
transcription and promotes NADPH oxidase
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Figure 2. Oxidative and nitrosative defense against Mtb. (A) Multisubunit complex of the phagocyte oxidase
(NADPH oxidase) depicting the core membrane ( gp91ph°x, p22°"°% known as flavocytochrome bssg) and
cytosolic (p67°™%, p47P°%, p40P"**) components. Also shown are immune (Gbp7) and nonimmune GTPases
(Racl, Rapla) that regulate trafficking to the Mtb phagosome for membrane anchorage as well as complex
assembly. The product superoxide (O; ) and oxidant derivatives are shown in red font. (B) Enzymatic produc-
tion of nitric oxide (-NO) via 5-electron oxidation of the guanidino nitrogen of L-arginine by inducible nitric
oxide synthase 2. Downstream intermediates or congeners are shown in red font.

assembly on mycobacterial phagosomes (Kim
etal. 2011). An IFN-v-induced GTPase, guanyl-
ate binding protein 7 (Gbp7), facilitates this as-
sembly by recruiting cytosolic p67PP*-p47Phox
heterodimers to gp91P"**-p22P"°* membrane
complexes surrounding the pathogen compart-
ment (Kim et al. 2011, 2012) (Fig. 2). Whether
natural mutations in this or other members of
the human GBP family induced during TB (Ber-
ry et al. 2010; Maertzdorf et al. 2011) are linked
to disease is a topic for future investigation.
TNF-induced ROS has also recently
emerged in zebrafish models of TB (Roca and
Ramakrishnan 2013). RIP1-RIP3 signaling elic-
its microbicidal activity that if left unabated can

induce macrophage necroptosis for subsequent
dissemination of bacilli. Notably, the primary
source of ROS in this setting was mitochondria
(Roca and Ramakrishnan 2013). It will there-
fore be interesting to see if mitochondrial ROS
plays a defining role against Mtb like its reported
anti-Salmonella activities (West et al. 2011).

Nitrosative Stress

RNS are a second class of oxidants capable
of potent tuberculocidal activity. As little as
90 ppm of nitric oxide (-NO) gas—approaching
the exhaled concentrations found for some TB
patients (Wang et al. 1998)—Xkills >99% of plat-
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ed organisms (Long et al. 1999). -NO shows mo-
lar potencies approaching many of the current
antibiotics used to treat TB, and the tuberculo-
cidal activity of some new drugs like bicyclic ni-
troimidazoles are ascribed to release of -NO
(Singh et al. 2008). Because it is a water- and
lipid-soluble diatomic gas, -NO traverses biolo-
gic membranes to react with O, or other ROS to
yield stable nontoxic anions (NO,, NO3 ) as
well as intermediates with marked bactericidal
properties. The latter include unstable dinitro-
gen oxides (N,03, N,O,), compound peroxides
(ONOO "), and nitrosothiol adducts (RSNO)
(Yuetal. 1999; Venketaraman et al. 2005) (Fig. 2).

Within acidified phagolysosomes, -NO
equivalents can be retrieved from stably oxidized
forms (e.g., NO; ) by protonation to HNO, and
subsequent dismutation (Nathan and Shiloh
2000) (Fig. 2). Indeed, acidified NaNO, was
one of the earliest compounds used to show a
tuberculostatic role for -NO (Chan et al. 1992).
Along with other RNS, ROS, and hypoxia, -NO
is sensed by Mtb to mobilize the dormancy reg-
ulon, underscoring the environmental pressure
applied by both nitrosative and oxidative stress
within tissue granulomas (Schnappinger et al.
2003; Voskuil et al. 2003). RNS-mediated
growth arrest may also involve nitrogenous
products from Mtb itself: Reduction of nitrate
(NO; ) by the bacterial narG system yields ni-
trite (NOZ_ ) that inhibits ATP consumption and
induces a transcriptomic profile distinct from
the -NO dormancy regulon in human macro-
phages (Cunningham-Bussel et al. 2013).

The chief phagocytic source of RNS is the
dimeric flavoenzyme, NOS2, which catalyzes
the 5e~ oxidation of L-arginine to L-citrulline
plus -NO (MacMicking et al. 1997a) (Fig. 2).
Robust NOS2 expression is elicited via cytokine
(notably IFN-vy, TNF-a, IL-18) and microbial-
based PRR signals (e.g., lipopeptides), although
its induction in human monocytes may be more
complex. Some human cells require at least
three combined stimuli—IFN-vy, TNF-«, and
IL-1B—to produce a relatively weak response
caused by STAT1 and NF-«kB acting at some
distance (~5-8 Kb) from the transcriptional
start site (Ganster et al. 2001). Limited availabil-
ity of the NOS2 cofactor, BH,, may also con-

tribute to the generally lower RNS production
of human versus rodent phagocytes in cell cul-
ture (Bertholet et al. 1999).

Priming signals or cofactors that may be
missing in vitro nonetheless appear present in
vivo because robust NOS2 expression within
Mitb granulomas is observed and macrophages
isolated from inflamed lungs or peripheral
blood of TB patients, or AMs from healthy do-
nors subsequently infected with Mtbex vivo,
produce mycobactericidal amounts of -NO
(Nicholson et al. 1996; Fachetti et al. 1999; Dlu-
govitzkyetal. 2000; Means etal. 2001; Wang et al.
2001; Choi et al. 2002; Mattila et al. 2013). Thus
NOS?2 is likely to be active under native TB set-
tings. Other evidence supporting an in vivo role
for RNS includes NOS2 loss-of-function muta-
tions or use of NOS inhibitors that lead to acute
susceptibility in experimental mouse and zebra-
fish models (Chan et al. 1995; MacMicking et al.
1997b, 2003; Flynn et al. 1998; Mogues et al.
2001; Scanga et al. 2001; Cambier et al. 2014).
Finally, the acquisition of Mtb resistance pro-
teins, including NoxR1, NoxR3, alkyl hydroper-
oxide reductase (AhpC), peptidyl methionine
sulphoxide reductase (MsrA), dihydrolipo-
amide dehydrogenase (Lpd), and dihydrolipo-
amide succinyl-transferase (SucB), also suggest
RNS have impacted the evolutionary course of
TB (Nathan and Shiloh 2000; St. John et al. 2001;
Bryk et al. 2002; Nathan 2012).

Acid Exposure and Lysosomal Killing

Acid as an antimicrobial defense was first pro-
posed by Metchnikoff using litmus dyes on in-
fected guinea pig macrophages (Metchnikoff
1905) and gained credence from two early ob-
servations: (1) that activated phagocytes acidify
their phagolysosomes (Rous 1925), and (2) that
achlorhydric hosts permit colonization of the
stomach (Giannella et al. 1973).

For Mtb, additional evidence came from its
marked sensitivity to pH < 6.5 in axenic media
with growth arrest at pH 5.0, especially when
examined under hypoxic or microaerophilic
conditions (Chapman and Bernard 1962; Tan
et al. 2010). Whether protonation itself or oth-
er components (e.g., low divalent cation con-
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centrations) contribute to this axenic attenua-
tion is unknown (Jackett et al. 1978; Chan et al.
1992; Piddington et al. 2000; Vandal et al. 2008).
Mitb has evolved periplasmic mechanisms such
as Rv3176c¢ encoding a serine protease (Vandal
et al. 2008) and putative transporters that could
exclude protons (H") acting directly on the
bacterium (Pethe et al. 2004). Even so, because
low pH embellishes both ROS and RNS (Fig. 2)
coupled with the fact that lysosomal hydrolyses
have pH optima in this range, acidification
probably facilitates other tuberculocidal effec-
tors to mediate killing inside the (auto)phago-
lysosomal compartment (Rohde et al. 2007).

IFN-vy- or TLR-stimulated macrophages
rapidly acidify mycobacterial phagolysosomes
to a pH of ~4.5-5.5, where it remains for at
least 24 h (Schaible et al.1998; MacMicking et al.
2003; Vandal et al. 2008). Sustained acidifica-
tion requires proton-pumping V-ATPases and
enables processing of lysosomal cathepsins;
both correlate with diminished Mtb growth
(Schaible et al. 1998; Gomes et al. 1999; Ullrich
etal. 1999; MacMicking et al. 2003). Agents that
inhibit the V-ATPase (e.g., omeprezole) increase
Mitb replication in human AMs and murine
bone marrow—derived macrophages (Suzuki
et al. 2000; MacMicking et al. 2003). Notably,
the low luminal pH within phagolysosomes
approaches the pK, of nitrous acid (3.8), which
may allow dismutation to -NO and nitrogen
dioxide (NO,) as a way of reusing protonated
nitrite (Vandal et al. 2009) (Fig. 2). This intra-
luminal RNS also overcomes phagosomal ar-
rest normally imposed by Mtb and envelope
lipids like trehalose dimycolate (Axelrod et al.
2008). Thus acidification cooperates with RNS
to target intravacuolar Mtb. Low pH also pro-
motes the activity of lysosomal proteases, lipas-
es, glycosidases, and antimicrobial peptides—
estimated at more than 200 in all (Trost et al.
2009)—that may disrupt and digest Mtb once it
is delivered to this compartment.

Immune and Nonimmune GTPases

Delivery of Mtb to (auto)lysosomes relies on
vesicular trafficking by immune and nonim-
mune GTPases. Members of the immunity-re-

Intracellular Defenses to M. tuberculosis

lated GTPase (IRG) and GBP families orches-
trate assembly of fusogenic SNARE proteins
and autophagy components on mycobacterial
phagosomes in IFN-vy-activated macrophages
(MacMicking et al. 2003; Gutierrez et al. 2004;
Singh et al. 2006; Tiwari et al. 2009; Kim et al.
2011, 2012a) (Fig. 3). Irgm1 targets the nascent
phagocytic cup surrounding mycobacteria
through carboxy-terminal amphipathic helical
interactions with PI13,4,5P3 and PI3,4P2 gener-
ated by host lipid kinases on the plasma mem-
brane (Tiwari et al. 2009). Once recruited,
Irgm1 binds the SNARE and dynein motor
adaptor, Snapin, for ATG14L-mediated endoly-
sosomal fusion (MacMicking et al. 2003; Tiwari
et al. 2009; Kim et al. 2012b). Human IRGM
similarly facilitates trafficking of the autophagic
machinery to Mtb vacuoles for lysosomal fusion
and acidification (Singh et al. 2006). Such cell-
autonomous activities also manifest in vivo:
Irgmlf/ ~ mice are profoundly susceptible to
Mtb infection (MacMicking et al. 2003; Feng
et al. 2004) (Fig. 3), and IRGM polymorphic
variants associate with human TB in Ghanese,
African American, Korean, and Chinese popu-
lations (Intemann et al. 2009; Che et al. 2010;
King et al. 2011; Song et al. 2014).

For the GBPs, Gbp7 delivers antitubercular
cargo in the form of NADPH oxidase to myco-
bacterial phagosomes for local ROS production
(Kim et al. 2011) (Fig. 3). In addition, Gbp1
interacts with SQSTM1/p62 for transporting
substrates that generate tuberculocidal peptides
within lysosomes and Gbpl™/~ mice are vul-
nerable to infection (Alonso et al. 2007; Kim
et al. 2011). Last, RAB family proteins such
as Rab20 recruit the Rab5 exchange factor
Rabex-5 for transition to late endosomes in
IFN- +-activated macrophages infected with
mycobacteria (Pei et al. 2014), and Rab8 directs
TBK1-mediated autophagic clearance (Pilli
et al. 2012). Together these different GTPase
classes orchestrate lysosomal killing of Mtb fol-
lowing immune activation of host cells.

Ubiquitination and Autophagic Clearance

A second route to lysosomal degradation in-
volves the detection of cytosolically exposed
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Mitb and subsequent sequestration by autoph-
agy (Stanley and Cox 2013) (Fig. 4). It has been
known for some time that Mtb communicates
with the cytosol (Myrvik et al. 1984; McDo-
nough et al. 1993). Access to or escape into
this compartment departs from the historical
view of bacilli being exclusively phagosome-
bound inside human macrophages (Armstrong
and Hart 1971). In fact both fates probably op-
erate within a given cell where most Mtb des-
tined for lysosomal killing remain “trapped”
inside vacuoles, whereas a smaller number
(129%-25%) may enter the cytosol, most nota-
bly after several days of infection (see Stanley
and Cox 2013 and references therein).

Rupture or permeabilization of phagosomal
membranes appears to rely on the type VII se-

Phagosomally trapped Mtb

Intracellular Defenses to M. tuberculosis

cretion system ESX-1 as first shown by examin-
ing Mtb RD1 mutants via electron microscopy
(van der Wel et al. 2007; Houben et al. 2012).
Permeabilization leads to mycobacterial DNA
leakage detected by cytosolic surveillance path-
ways including the DNA and cyclic dinucleotide
sensor, STING (Manzinillo et al. 2012; Watson
etal. 2012). STING activation initiates a cascade
involving TBK1 that engages ubiquitin-bind-
ing receptors downstream (Watson et al. 2012)
(Fig. 4). Cytosolic mycobacteria are ubiquiti-
nated primarily on K63 chains for detection
by p62/SQSTM1 and NDP52, both of which
contain LC3-interacting regions (LIRs) for
binding to the autophagic membrane proteins,
LC3B and LC3C, respectively (von Muhlinen
et al. 2012; Watson et al. 2012).

Cytosolically exposed Mtb

Mtb phagosome | () |

- IRGM/Irgm1
e- GBP7
RAB20
4 b
'._ \—/ I

Snapin-ATG14L

Autophagosome Phagocyte oxidase

~~_  RABEX5
Engulfment
fusion | -
GBP1
0‘ p62/SQSTM1
Autolysosomal
killing

W

Mtb phagosome

ESX-1 J :
=+ XmtbDNA
s\

7

| i \ STING
, s’ | TBK-1
. 4 PARKIN
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=y K63 > K48
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GBP1
p62/SQSTM1
Autolysosomal
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Figure 4. Differential recruitment of effectors to “trapped” and “escaped” Mtb in immunologically activated
macrophages. (Left) Delivery of phagosomal bacilli to autolysosomes after autophagic capture requires both
immune and nonimmune GTPases. Their position in the pathway and corresponding interacting partners are
color matched. (Right) Cytosolically exposed bacilli following permeabilization of the phagosomal membrane by
ESX-1 releases DNA for detection by STING. This recruits TBK-1 and probably LC3C for Mtb capture. The E3 li-
gase PARKIN also ubiquitinates Mtb directly or its surrounding membrane remnants for detection by the auto-
phagic pathway. A preferential requirement for K63 over K48 ubiquitin linkage is reported (Manzanillo et al. 2013).
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The E3 ligase, PARKIN, mediates ubiquiti-
nation and recruitment of downstream Ub re-
ceptors (Fig. 4) and PARK2-deficient mice are
moderately susceptible to Mtb challenge (Man-
zanillo et al. 2013). This differs from the highly
susceptible phenotype of Atg5™/~ animals,
suggesting additional roles for some autoph-
agy-related proteins (Watson et al. 2012). In
this respect, SQSTM1/p62 also participates in
delivering unbiquitinated substrates (e.g., ribo-
somal subunits) to autolysosomes for generat-
ing tuberculocidal peptides in IFN-y-activated
macrophages (Alonso et al. 2007; Ponpuak et al.
2010), a process that may require interaction
with GBP1 (Kim et al. 2011). A human IRGMd
isoform likewise induces mitochondrial Bax/
Bak-dependent cell death during mycobacterial
infection as an IFN-v-induced mechanism dis-
tinct from its autophagic activities (Singh et al.
2010). Hence, unconventional roles may be sub-
sumed by both autophagy-related and ubiqui-
tin-binding proteins to confer antitubercular
defense.

Antimicrobial Peptides

Antimicrobial peptides (AMPs) are evolution-
arily ancient constituents of lysosomes, secre-
tory granules, and inflammatory exudates
(Ganz 2003; Zanetti 2004; Lai and Gallo 2009).
At least 1700 AMPs exist in metazoans and uni-
cellular organisms which show considerable se-
quence diversity (http://aps.unmc.edu/AP/).
Nonetheless, AMPs share certain structural fea-
tures, namely, an ~15-30 amino acid amphi-
pathic core composed largely of cationic and
hydrophobic residues. Both features likely con-
tribute to mycobacterial killing. Electrostatic
interactions between positively charged amino
acids and negatively charged Mtb cell wall phos-
pholipids may provide initial contact, whereas
hydrophobic residues integrate into the bacterial
membrane for disruption (Ganz 2003). These
features—size, amino acid composition, helical
or extended loop conformations, and disulfide
linkage—help classify the lytic intracellular
AMPs into three major categories: a-defensins,
B-defensins, and cathelicidins (Ganz 2003; Za-
netti 2004; Lai and Gallo 2009).

More than 50 mammalian a-defensins, 90
B-defensins, and 30 cathelicidins are known.
To date, evidence exists for B-defensins and
cathelicidins in macrophage immunity to Mtb
although neutrophil granules also kill bacilli
via uncharacterized peptides (Tan et al. 2006).
IFN-vy elicits B-defensin 4 and the single pro-
cessed cathelicidin peptide, hCAP18/LL-37,
in human macrophages to promote 1,25-dihy-
droxyvitamin Ds;-dependent autophagic kill-
ing of tubercle bacilli (Fabri et al. 2011). In
mice, IFN-y elicits ubiquicidin-like peptides,
which, when isolated from macrophage lyso-
somal fractions or synthetically reconstituted,
kill Mtb at low micrometer concentrations
(Alonso et al. 2007). Like the AMPs, Ub-like
peptides (e.g., Ub2) have been shown to insert
into the bacterial membrane to disrupt integrity
and equilibrate the transmembrane potential
(Foss et al. 2012).

Nutritional Immunity: Competition
for Cations

Macrophages and other phagocytic cells consti-
tute rich nutritional sources of amino acids,
lipids, sugars, and transition metals. Competi-
tion for cations is one of the main contests
fought between Mtb and its host cell with the
pathogen coming well-equipped in terms of
siderophores (e.g., mycobactins, exochelins)
that sequester transition metals like iron (Scha-
ible and Kaufmann 2004). Divalent zinc (Zn*"),
manganese (Mn”"), magnesium (Mg*"), and
copper (Cu®") are other cations nutritionally
contested within phagocytes.

Iron

Iron is essential for Mtb growth, although the
labile pool of free ferrous form (Fe*™) is low
given that most Fe is complexed with transfer-
rin, ferritin, lactoferrin, and other hemopro-
teins inside host cells (Schaible and Kaufmann
2004). Macrophage iron uptake proceeds via
hemoglobin scavenger receptors (CD163) as
well as capture via transferrin receptors (TFs)
that internalize two Fe’" moieties as part of
the holoTF complex. Release of Fe’* occurs in
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the endosome with which the Mtb phagosome
intersects, thus allowing bacterial access to iron
(Sturgill-Koszycki et al. 1996). IFN-y-activated
macrophages limit this availability by down-reg-
ulating TF expression and preventing accumu-
lation of Fe*" in its saturated storage form (as
Fe’ " -holoferritin complex) within the cytosol
(Byrd and Horwitz 1993; Schaible et al. 1998).

Phagosomal Fe** (as well as Mn®>", Mg**,
and Zn®") is concomittently lowered by ap-
proximately two- to sixfold in IFN-v-activated
macrophages infected with Mrb (Wagner et al.
2005), a reduction due in part to the pro-
ton-dependent Mn®" and Fe*" efflux pump,
NRAMPI (encoded by SLC11A1; Jabado et al.
2000). Nramp1 was originally identified via po-
sitional cloning in inbred mouse strains harbor-
ing G169A variants of the Bcg/Ity/Lsh allele
(denoting Mycobacterium bovis BCG, Salmonel-
la typhimurium, and Leishmania donovani sus-
ceptibility), and NRAMPI polymorphisms are
thought to predispose to human TB as well (see
Fortin et al. 2007). NRAMP1 is a 12-transmem-
brane spanning protein found on lysosomes,
tertiary granules (neutrophils), and phago-
somes, where it aids mycobacterial killing (Ja-
bado et al. 2000; Fortin et al. 2007). Genetic
studies infer cationic competition between
NRAMPI and an Mtb homolog, Mramp, be-
cause Mn”*" and Fe*" concentrations are elevat-
ed in phagosomes harboring Mramp-deficient
Mtb (Wagner et al. 2005). Phagosomal recruit-
ment of the Fe export protein ferriportin-1 also
reduces intravacuolar iron after IFN-vy activa-
tion (Van Zandt et al. 2008), whereas lipoca-
lin-2 directly sequesters iron to inhibit Mtb in
macrophages, neutrophils, and airway epitheli-
um (Martineau et al. 2007; Saiga et al. 2008;
Johnson et al. 2010).

Other Cations

Magnesium, zinc, and copper are likewise
sensed or used by Mtb; however, as with iron,
high concentrations of these transitional metals
are directly toxic or promote tuberculocidal
ROS (Russell 2011; Samanovic et al. 2012). A
requirement for Mg>" in Mtb replication was
identified under low cation and pH conditions

Intracellular Defenses to M. tuberculosis

akin to those found in the phagolysosome where
bacterial growth was impaired (Piddington et al.
2000). This finding was reinforced by Mtb mu-
tants lacking the mgtC (Mg " transporter) gene
that perform poorly under the same conditions
and are highly attenuated in human macrophag-
es and mice (Buchmeier et al. 2000). For Zn>™,
intracellular stores are pumped into Mtb phag-
osomes via a ROS-dependent pathway to pro-
mote killing in TLR-activated macrophages
(Botellaetal. 2011). Here Mtb attempts to coun-
ter Zn”" toxicity by expressing a P-type ATPase
efflux transporter encoded in the ctpC locus
(Botella et al. 2011). For Cu”**, a host P-type
ATPase pump ATP7A imports Cu*" into the
phagosome for generating intraluminal OH-
radicals, which is countered to some extent by
Mtb transport proteins CtpV and MctB (Ward
etal. 2010; Wolschendorf et al. 2011; Samanovic
etal. 2012). Divalent cations are thus selectively
furnished or withheld to limit Mtb growth.

Nutritional Immunity: Carbon and Amino
Acid Metabolism

ICLs and IRG1

Carbon catabolism is critical for Mtb survival
and persistence (Munoz-Elias and McKinney
2006). Conserving C, carbon during periods
of nutrient restriction via anaplerosis helps
maintain bacterial metabolism fueled by fatty
acids. One metabolic target for cell-autono-
mous immunity is the Mtb glyoxylate shunt
pathway that replenishes tricarboxylic acid
(TCA) cycle intermediates normally diverted
for biosynthetic purposes via successive carbox-
ylation reactions (McKinney et al. 2000). Early
work discovered a glycoxylate shunt enzyme,
isocitrate lyase 1 (ICL1), was essential for Mtb
persistence in IFN-y-activated macrophages
and mice (McKinney et al. 2000). Subsequent
discovery of a second functional ICL isoform
(ICL2) corroborates the strong metabolic pres-
sure placed by cell-autonomous immunity on
Mib to use anaplerotic pathways (Munoz-Elias
and McKinney 2005).

The immune-responsive gene 1 (IRG1) has
recently been identified as exerting part of that
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metabolic pressure in activated human and
mouse macrophages (Michelucci et al. 2013)
(Fig. 5). IRGI is transcriptionally induced by
autocrine IFN/STAT1 signaling in response to
both virulent and environmental mycobacteria
(Shi et al. 2005; Basler et al. 2006; Michelucci
et al. 2013). Thereafter it localizes to mito-
chondria (DeGrandi et al. 2009), where it decar-
boxylates the TCA intermediate cis-aconitate
needed for isocitrate synthesis, thus depriving

A Propionyl-CoA

ICL1 and ICL2 of their substrate to run the
glyoxylate shunt (Michelucci et al. 2013) (Fig.
5). Decarboxylation of cis-aconitate also pro-
duces itaconic acid (alternatively known as
methylenesuccinic acid) that may be directly
toxic to bacilli (Michelucci et al. 2013). IRG1
could additionally promote B-oxidation-de-
pendent mitochondrial ROS production for
some of its bactericidal activities (Hall et al.
2013; Roca and Ramakrishnan 2013).
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Figure 5. Nutritional immunity to Mtb. (A) Depletion of tricarboxylic acid (TCA) cycle and potential glyoxylate
shunt substrates via a cis-aconitate decarboxylase known as immunoresponsive gene-1 (IRG1) that resides in
mitochondria. Position at which IRGI blocks anaplerotic substrate production for Mtb is shown. Isocitrate
lyases 1 and 2 (ICL1/2) that serve as important Mtb anaplerotic enzymes in the glycoxylate shunt and that are the
functional Mtb paralogs of methylcitrate lyases (MCLs) in the methylcitrate pathway (Mufioz-Elias et al. 2006)
are also depicted. (Adapted from data in Michelucci et al. 2013.) (B) Tryptophan depletion by the IFN-v-
induced enzyme, indolamine-2,3-dioxygenase (IDO), in activated macrophages. Mtb genes encoding the en-
zymes known to be involved in generating precursors of tryptophan biosynthesis are shown in blue font.
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IDO

Other effector mechanisms target the produc-
tion of amino acids catabolized or assimilated
by Mtb for its growth (Zhang and Rubin 2013).
Tryptophan degradation is an effective defense
against obligate bacterial pathogens like Chla-
mydia and protozoan parasites including Toxo-
plasma and Leishmania spp. (MacMicking
2012). IFN-y induces indoleamine-2,3-dioxy-
genase (IDO), a heme-containing oxidoreduc-
tase responsible for the initial rate-limiting step
of the kynurenine pathway in which it degrades
L-tryptophan to generate N-formyl-kynurenine
(MacMicking 2012) (Fig. 5).

Although most laboratory Mtb strains are
not tryptophan auxotrophs and IDO inhibition
does not impact their growth within IFN-y-ac-
tivated macrophages (MacMicking et al. 2003),
recent use of Mtb Trp~ mutants has revealed
tryptophan degradation by the host does exert
metabolic pressure on Mtb in macrophages
and infected mice (Zhang et al. 2013). Mtb syn-
thesizes L-tryptophan via an operon containing
TrpE, encoding an enzyme that converts choris-
mate to anthranilate, and TrpD, which encodes
a ribosylating enzyme for the substrate (Zhang
et al. 2013) (Fig. 5). Deletion of TrpE greatly
attenuates Mtb growth in IFN-vy-activated mac-
rophages that is restored in IDO-1-deficient
cells; a similar outcome occurs in vivo. More-
over, fluorinated anthranilate (5-FABA and 6-
FABA) inhibitors that block Mtb tryptophan
synthesis render the bacillus susceptible to
IDO-mediated killing. Thus drugs targeting
bacterial counterimmune mechanisms allow
the corresponding host effector to regain func-
tionality inside phagocytic cells.

CONCLUDING REMARKS

This perspective has outlined the major cell-au-
tonomous effectors deployed against Mtb. Be-
cause apoptosis and autophagy are covered ex-
tensively elsewhere in this collection, they have
been given limited coverage or omitted alto-
gether in this particular article. Furthermore,
the list of effectors is by no means complete.
Cell-autonomous immunity typically uses all
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the tools at its disposal—proteins, peptides, nu-
cleotides, cations, metabolites, and physiologi-
cal gases—to defend the host against infection.
Hence, it can be anticipated that new pathways
and effector molecules will emerge with antitu-
bercular defense functions. IFN-y- or PRR-in-
dependent pathways like GM-CSF-mediated
killing (Rothchild et al. 2014) and uncon-
ventional activities such as mitochondrial im-
munity (via ROS, IRGM1, and IRG1) or auto-
phagic engulfment of cytosolically exposed
bacilli will be fertile areas of future investigation.
Once understood, these novel defense factors
may join established mechanisms as a platform
from which to design host-directed therapies or
adjunctive treatments that more fully expose
Mitb to killing by the human immune system
(Nathan 2012; Hawn et al. 2013; Wilkinson
2014). Both offer hope for shortening treatment
as well as for tackling the problem of bacterial
multidrug resistance (Singh et al. 2008; Zhang
et al. 2013; Stanley et al. 2014).
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