A	muscle contraction level control, 309–311
Acute kidney injury (AKI)	neural decoding algorithms, 312-313
animal models, 112	prospects, 313–314
causes, 112	rhythmic movement decoding, 307-309
immune cell roles, 112–113	Bipolar electrode (BPE)
inflammation and neuroimmune interactions	closed bipolar electrodes
cholinergic anti-inflammatory pathway	molecular biomarker detection
macrophages, 114	assays, 272–273
overview, 114	prospects, 273–275
spleen role, 114–115	overview, 264–265
T cells, 114	optical readout strategies, 265-266
ultrasound activation and kidney protection,	principles, 264–265
115-116	BPE. See Bipolar electrode
vagus nerve stimulation activation and kidney	Brain-computer interface (BCI), 305-307, 335
protection, 117	
overview, 113-114	
overview, 111–112	С
pharmacological therapy, 113	CAN. See Central autonomic network
vagus nerve stimulation	CAP. See Cholinergic anti-inflammatory pathway;
optogenetics	Compound action potential
C1 neuron stimulation, 119-120	Cardiac arrest, vagus nerve stimulation in resuscitation
devices, 118-119	studies, 160–162
overview, 117-118	Cardiac ischemia-reperfusion injury, small heat shock
AF. See Atrial fibrillation	protein studies, 127
AKI. See Acute kidney injury	Central autonomic network (CAN), brain-gut
ALS. See Amyotrophic lateral sclerosis	interactions, 225
Amyloid fibrils	Central pattern generator (CPG), 307-308
nicotinic acetylcholine receptor binding, 125, 135-137	CGM. See Continuous glucose monitoring
small heat shock protein amyloid fibrils	Cholinergic anti-inflammatory pathway (CAP)
endocytosis and migration to secondary lymph	acute kidney injury studies
organs, 131	ultrasound activation and kidney protection,
formation for therapeutic activity, 129-131	115–116
gene expression modulation, 134-135	vagus nerve stimulation activation and kidney
knockout mouse studies, 131-134	protection, 117
Amyotrophic lateral sclerosis (ALS), 279, 283–284, 306	macrophages, 114
Aptasensor, electrophotonic diagnostics, 270	overview, 114
Artificial pancreas. See Diabetes	spleen role, 114–115
Atherosclerosis	T cells, 114
inflammation resolution failure, 194	ultrasound peripheral nerve stimulation, 145–146, 149
pathogenesis, 193–194	Chronic intestinal pseudo-obstruction (CIPO)
Atrial fibrillation (AF), vagus nerve stimulation studies,	electrical stimulation therapy
165-166	clinical trials, 255
	dual-pulse stimulation, 250
В	electrode types, 251
	inferential current stimulation, 250–251
BCI. See Brain—computer interface	multichannel stimulation, 250
Bioelectronic neural bypass, movement restoration	parameters
brain-computer interface, 305–307	amplitude/intensity, 249
chronic neural recordings, 311–312 feature selection and extraction, 312	duty cycle, 249 frequency, 249
ICALUIC SEIECHOII AIIU EAHACHOIL J12	HEUREHEV, 447

Chronic intestinal pseudo-obstruction (CIPO) (Continued)	Parkinson's disease closed-loop neuromodulation,
pulse-width, 249–250	103
waveform, 249	Depression, enteric nervous system modulation for
synchronized stimulation, 250	treatment, 239
targets, 248–249	Designer receptors exclusively activated by designer
overview, 255	drugs (DREADDs), 30–31
CIPO. See Chronic intestinal pseudo-obstruction	Diabetes
CLN. See Closed-loop neuromodulation	artificial pancreas
Closed bipolar electrode. See Bipolar electrode	historical perspective, 324
Closed-loop neuromodulation (CLN)	inpatient studies, 324
Components	outpatient non-mobile units, 325
acquisition system, 99	prospects, 327-328
output device, 101	system integration, 324–325
processing unit, 99–101	wearable units, 325–327
sensors, 97–99	economic impact, 318
conditions for use, 96–97	enteric nervous system modulation, 239
cortical stimulation for neuroplasticity induction, 101–103	glucose monitoring and risk analysis, 321, 323–324 glucose-insulin control network, 318–320
hemodynamic function control with closed-loop	hepatic ultrasound effects in animal models,
vagus nerve stimulation, 104	149-151
Parkinson's disease treatment, 103	insulin therapies, 320–321
prospects, 104–106	optogenetics devices, 46-47, 51-53
rationale	overview, 317–318
adaptive neuromodulation, 95-96	timeline of technology development, 322
responsiveness, 94–95	Disuse atrophy, 285
Coagulopathy, vagus nerve stimulation studies, 168	DMD. See Duchenne muscular dystrophy
Compound action potential (CAP), vagus nerve, 80-85	DREADDs. See Designer receptors exclusively activated by
Constipation	designer drugs
electrical stimulation therapy	Duchenne muscular dystrophy (DMD), 279, 283-285
colonic electrical stimulation, 256	
dual-pulse stimulation, 250	E
electroacupuncture, 256-257	
electrode types, 251	EAE. See Experimental autoimmune encephalitis
inferential current stimulation, 250-251	EIG. See Electrical impedance myography
multichannel stimulation, 250	EIT. See Electrical impedance tomography
parameters	Electrical impedance myography (EIG)
amplitude/intensity, 249	amyotrophic lateral sclerosis, 283–284
duty cycle, 249	applications, 282–283
frequency, 249	diagnostics, 283
pulse-width, 249-250	disuse atrophy, 285
waveform, 249	Duchenne muscular dystrophy, 283–285
sacral nerve stimulation, 256	electrodes, 282
slow transit constipation, 256	facioscapulohumeral muscular dystrophy, 285
synchronized stimulation, 250	muscle injury, 285–286
targets, 248-249	myotonic dystrophy, 285
tibial nerve stimulation, 256	needle impedance electromyography, 286–287
transcutaneous electrical stimulation, 257	principles, 281–282
overview, 255–256	prospects, 287
Continuous glucose monitoring (CGM), 323-324	sarcopenia, 285
Continuous subcutaneous insulin infusion (CSII), 321	spinal muscular atrophy, 283
CPG. See Central pattern generator	virtual muscle biopsy, 286
CRISPR, optogenetics, 48-50, 54	Electrical impedance tomography (EIT), muscle impedance
CSII. See Continuous subcutaneous insulin infusion	imaging, 286
	Electroacupuncture, constipation, 256–257
D	Electrochemical zero-mode waveguide (E-ZMW), 267
D	Electromagnetic devices
DBS. See Deep brain stimulation	cell activity control, 63
Deep brain stimulation (DBS)	clinical prospects, 71–73
ethics, 335–336	genetically encoded particles, 68-71

magnetic nanoparticles	Functional dyspepsia (FD)
aggregation to activate cell signaling, 66	electrical stimulation therapy
mechanical stimulation, 63-66	clinical trials, 253-254
thermal effects, 66-68	dual-pulse stimulation, 250
Electromyography (EMG)	electrode types, 251
needle impedance electromyography, 286-287	inferential current stimulation, 250-251
overview, 280	multichannel stimulation, 250
EMG. See Electromyography	parameters
ENS. See Enteric nervous system	amplitude/intensity, 249
Enteric nervous system (ENS)	duty cycle, 249
indications for modulation	frequency, 249
functional gastrointestinal disorder, 238-239	pulse-width, 249-250
metabolic disorders, 239	waveform, 249
psychiatric and mood disorders, 239-240	synchronized stimulation, 250
overview, 237–238	targets, 248-249
prospects for study	enteric nervous system modulation, 238
connectome unraveling, 242	·
ingestible devices, 243	C
moving target interfaces, 242–243	G
targets for modulation	Gastroesophageal reflux disease (GERD)
direct organ stimulation, 240-242	electrical stimulation therapy
extrinsic nervous system, 240	clinical trials, 252–253
intrinsic nervous system, 240	dual-pulse stimulation, 250
Epilepsy	electrode types, 251
overview, 176	inferential current stimulation, 250–251
treatment, 176–177	multichannel stimulation, 250
vagus nerve stimulation	parameters
animal studies, 177	amplitude/intensity, 249
clinical trials, 177–179	duty cycle, 249
parameters	frequency, 249
amplitude, 179–180	pulse-width, 249-250
closed-loop stimulation, 180–181	waveform, 249
duty cycle, 180	synchronized stimulation, 250
frequency, 180	targets, 248-249, 252
pulse width, 179–180	overview, 252
prospects, 181	Gastrointestinal motility
Ethics, bioelectronic medicine	disorders. See specific diseases
academic-industry relationships, 339-341	electrical stimulation targets, 248-249
deep brain stimulation for Parkinson's disease, 336	physiology, 248
informed consent, 334–335	Gastroparesis
innovation, 337–339	electrical stimulation therapy
intellectual property, 341	dual-pulse stimulation, 250, 253
research ethics, 336–337	electrode types, 251
theories, 333–334	gastric slow wave alteration, 253
Experimental autoimmune encephalitis (EAE)	inferential current stimulation, 250–251
nicotine therapy, 135–136	multichannel stimulation, 250
small heat shock protein studies	nausea and vomiting treatment, 253
amyloid fibril formation for therapeutic activity,	parameters
129–131	amplitude/intensity, 249
history of study, 126–127	duty cycle, 249
knockout mouse studies, 131–134	frequency, 249
E-ZMW. See Electrochemical zero-mode waveguide	pulse-width, 249-250
E Zivi vi. see Electrochemical zero mode waveguide	waveform, 249
	spinal cord stimulation, 253
F	synchronized stimulation, 250
Facioscapulohumeral muscular dystrophy	targets, 248–249
(FSHD), 283, 285	vagus nerve stimulation, 230-231
FD. See Functional dyspepsia	GERD. See Gastroesophageal reflux disease
FSHD. See Facioscapulohumeral muscular dystrophy	GTS-21 117

Н	parameters
Heart failure (HF)	duty cycle, 211
overview, 181–182	output current, 208-210
vagus nerve stimulation	pulse width, 210
animal studies, 162–163, 182–184	stimulation location, 211-213
clinical trials, 184-186	Irritable bowel syndrome (IBS)
prospects, 186	brain-gut interaction defects, 227
Heart rate variability (HRV)	enteric nervous system modulation, 229, 238
inflammatory bowel disease, 223	
inflammatory reflex biomarker, 208	
irritable bowel syndrome, 223	K
Heat shock proteins. See Small heat shock proteins	Kidney injury. See Acute kidney injury
Heme oxygenase-1 (HO-1), 117	
Hemorrhagic shock, vagus nerve stimulation	
studies, 168	L
HF. See Heart failure	Lateral flow assay (LFA), point-of-care devices, 269
HO-1. See Heme oxygenase-1	LFA. See Lateral flow assay
HRV. See Heart rate variability	Localized surface plasmon resonance (LSPR)
Hypertension, vagus nerve stimulation studies,	aptasensors, 270
168–169	construction, 266
	principles, 266
1	selectivity, 266–267
	siderophore-based devices, 271-272
IBD. See Inflammatory bowel disease	LSPR. See Localized surface plasmon resonance
IBS. See Irritable bowel syndrome	
ICG. See Impedance cardiography	A.4
Impedance cardiography (ICG), 281	M
Inflammation. See also Cholinergic anti-inflammatory	Magnetic nanoparticles. See Electromagnetic devices
pathway; Inflammatory reflex	Magnetoelectric nanoparticle
neural control	Magnetic resonance imaging (MRI), magnetoelectric
B-cell function, 197–198	nanoparticles, 292–293, 300–301
inflammatory reflex, 194–197	Magnetoelectric nanoparticle (MENP)
neural circuits, 197	imaging, 300–301
resolution of inflammation, 198	prospects, 301–302
therapeutic targeting, 198–199	single-neuron stimulation, 296–298
neuroimmune interactions in acute kidney injury,	targeted drug delivery
113–114	blood-brain barrier release, 298
overview of response, 190–191	high-specificity intracellular targeted delivery
resolution	298–300
failure in inflammatory disease, 194	traditional magnetic nanoparticle distinction,
specialized pro-resolving mediators, 191–192	293–296
ultrasound peripheral nerve stimulation. See	MENP. See Magnetoelectric nanoparticle
Ultrasound	MI. See Myocardial infarction
Inflammatory bowel disease (IBD)	MRI. See Magnetic resonance imaging
brain-gut interaction defects, 227	Myocardial infarction (MI), vagus nerve stimulation
economic impact, 222	studies, 163–165
inflammation resolution failure, 194	Myotonic dystrophy, 285
pathogenesis, 192–193	
treatment, 189–190	N
vagus nerve stimulation, 5, 8–9, 198–199, 227–229	
Inflammatory reflex	NEMOS device, 231
biomarkers of activation, 207–208	Neurochip BCI, 101
brain signaling, 7	NF-кВ. See Nuclear factor кВ
overview, 194–197, 205–207	Nicotine, experimental autoimmune encephalitis
vagus nerve etimulation	treatment, 135–136 Nicotinic acetylcholine receptor
vagus nerve stimulation	, 1
clinical trials, 215–216	amyloid fibril binding, 125, 135–137
electrode architecture, 211–213	inflammatory reflex, 195
microstimulator development, 213-215	Nuclear factor κB (NF-κB), 3, 5, 126–127

overview, 17–19
PNS. See Peripheral nervous system
Point-of-care devices, diagnostics, 268-269
Postoperative ileus, vagus nerve stimulation, 229–230
R
RA. See Rheumatoid arthritis
Retinal ischemia, small heat shock protein studies, 127
RF BION, 213–214
Rheumatoid arthritis (RA)
inflammation resolution failure, 194
pathogenesis, 193
treatment, 189–190
vagus nerve stimulation, 199
S
Sacral nerve, stimulation for constipation, 256
Sarcopenia, 285
SCI. See Spinal cord injury
Shock. See Hemorrhagic shock
Siderophore, electrophotonic diagnostics, 270–272
Sjögren's syndrome, vagus nerve stimulation, 10
SMA. See Spinal muscular atrophy
Small heat shock proteins
amyloid fibrils
endocytosis and migration to secondary lymph
organs, 131
formation for therapeutic activity, 129–131
gene expression modulation, 134–135
knockout mouse studies, 131–134
experimental autoimmune encephalitis
amyloid fibril formation for therapeutic activity,
129–131
history of study, 126–127
knockout mouse studies, 131–134
receptors, 135–137
structure–activity relationships, 128–129
therapeutic studies in animal models
cardiac ischemia–reperfusion injury, 127
retinal ischemia, 127
stroke, 127–128
Spinal cord injury (SCI), bioelectronic neural bypass, 306
Spinal muscular atrophy (SMA), 283
Stroke
bioelectronic neural bypass, 306
small heat shock protein studies, 127–128
vagus nerve stimulation studies, 166–167
Support vector regression (SVR), 310
Surface plasmon resonance. See Localized surface plasmon
resonance
SVR. See Support vector regression
Т
TENS. See Transcutaneous electrical nerve stimulation
Tibial nerve, stimulation for constipation, 256
TMS. See Transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS), 63, 72, 335	optogenetics
Transcutaneous electrical nerve stimulation (TENS),	C1 neuron stimulation, 119–120
143, 257	devices, 118-119
TREK-1, 64	animal models of inflammatory diseases, 7-9
TRPV1, 65, 67, 69-71, 84	anti-inflammatory mechanisms, 226-227
TRPV4, 65, 69-71	atrial fibrillation studies, 165–166
	cardiac arrest resuscitation studies, 160–162
U	coagulopathy studies, 168
	devices, 116–117
Ultrasound	gastroparesis, 230–231
cholinergic anti-inflammatory pathway activation and	heart failure studies, 162–163
kidney protection, 115–116	hemodynamic function control with closed-loop
peripheral nerve stimulation	nerve stimulation, 104
cholinergic anti-inflammatory pathway,	hemorrhagic shock studies, 168
145–146, 149	hepatic ultrasound comparison with implant-based
hepatic stimulation in metabolism and diabetes	stimulation, 151–152
models, 149	historical perspective, 1–3, 18, 157–160
hepatic ultrasound comparison with implant-based	hypertension studies, 168–169
stimulation, 151–152	inflammatory bowel disease, 5, 8–9, 198–199, 227–229
lipopolysaccharide-induced inflammation	inflammatory reflex induction
model, 145	clinical trials, 215–216
overview, 143–147	electrode architecture, 211–213
prospects, 152–153	microstimulator development, 213–215
splenic stimulation and inflammation, 147-149	parameters
	duty cycle, 211
V	output current, 208–210
Vagus nerve (VN)	pulse width, 210
afferents in neuroimmune dialogue, 6	stimulation location, 211–213
anatomy, 3, 23–25	invasive versus noninvasive, 231
inflammatory reflex role, 3–6	irritable bowel syndrome, 229
optogenetic control	myocardial infarction studies, 163–165
awake animal studies, 29–30	neuromodulation, 141–143
breathing, 25–27	obesity, 230
divergent vagal neuron populations, 23–25	postoperative ileus, 229–230
gastrointestinal function, 27–29	prospects
overview, 19–22	applications, 10–11
signal interpretation	gastrointestinal disorder treatment, 231–232
inflammation-related signals, 79–84	side effects, 169–170
metabolic state-related signals, 84–85	stroke studies, 166–167
overview, 77–79	technical challenges, 143
prospects for study, 88–89	therapeutic applications, 9–10
respiration and blood pressure biomarkers, 86–88	tumor necrosis factor response, 196
	ultrasound. See Ultrasound
sympathovagal balance, 222–223 Vagus nerve stimulation (VNS)	rheumatoid arthritis, 199
. ,	· · · · · · · · · · · · · · · · · · ·
acute kidney injury protection	inflammatory bowel disease, 5, 8–9, 198–199
cholinergic anti-inflammatory pathway	VN. See Vagus nerve
activation, 117–118	VNS. See Vagus nerve stimulation