A	H10N7, 317
A-192558, 721	H10N8, 317
A-315675, 721	evolution
ACM. See Antigen clearance model	H5N6, 321
Acute respiratory distress syndrome (ARDS),	H7N9
249, 552	high-pathogenicity viruses, 319, 321
Aging	low-pathogenicity viruses, 319
CD8 T-cell response, 566–567	emerging viruses, 334–336
influenza susceptibility and severity, 248-250,	H5N1 in Egypt. See H5N1
285–287	H7N9 in China. See H7N9
Amantadine, H7N9 resistance, 375	high-pathogenicity viruses
ANP32, 7–8, 123–126	documented outbreaks, epidemics, and
ANT3, 555	pandemics, 421–426
Antigen clearance model (ACM), 586–589	emergence mechanisms, 420, 427–428
Antigenic distance hypothesis, 652	genetic lineages associated with outbreaks,
Antigenic drift, evolution, 211, 213	428-435
Antiviral therapy. See also specific drugs	historical perspective, 419-420
antibodies, 690–695, 725–727	prospects for study, 435–436
combination therapy, 695-696	molecular markers of human pathogens,
hemagglutinin inhibitors, 688–690	318–320
host-directed therapies, 696–697	overview, 313–314
neuraminidase inhibitors, 685–688,	prospects for study, 324
717–728	reassortment, 207–208, 359
overview, 679–680	receptor-binding profiles of human
polymerase inhibitors, 680–684, 707–713	pathogens, 317–318
prospects, 700–701	severe infection
study design for hospitalized influenza patients	cytokine storm, 323
end points, 697–699	susceptibility
populations, 699	host factors, 323–324
type of study, 700	viral factors, 322–323
AP-1, 145, 553, 617	spillover into dogs and cats, 488–489
ARDS. See Acute respiratory distress syndrome	tissue tropism, 323–324
Aspirin, NF-κB inhibition, 142	tioue tropism, 323 321
Asthma, influenza susceptibility and severity,	
287-288	_
ATF-2, 140, 145	В
Avian influenza viruses. See also specific viruses	Baloxavir acid (BXA), 20
clinical manifestations of human infection,	Baloxavir marboxil
321-322	efficacy, 681-682, 712
epidemiology of human infection	mechanism of action, 711
H5N1, 314, 317	overview, 680-681, 710-711
H5N6, 315	resistance, 682, 712
H7N7, 315	safety, 682
H7N9, 315, 317	Bat influenza A viruses
H7N4, 315	evolution, 498-500
H9N2. 315	H18N11

Bat influenza A viruses (Continued)	CT-P27
replication efficiency, 503-504	efficacy, 694
replication without N11, 501–502	mechanism of action, 693
zoonotic risk, 505–506	CXCL10, 552
hemagglutinin and MHC class II molecules,	Cystic fibrosis (CF), influenza susceptibility
500-501	and severity, 288–289
NA protein counteracting HA function, 502–503	Cytomegalovirus (CMV), 249–250
overview, 497–498	2/11-11-6-11-11-11-11-11-11-11-11-11-11-11
prospects for study, 506	
B cell	D
immunization response. See Vaccination	D
influenza immune response, 561–564	DDX3, 555
recall antibody studies after infection	Deep mutational scanning (DMS), 168
animal models, 531–532	Defective interfering RNA, 8–9
humans, 529–530, 583–584	Defective ribosome products (DRiPs), influenza A
BiFC. See Bimolecular fluorescent	virus function, 92
	Defective virus genome (DVG), transmission,
complementation	187-189
Bimolecular fluorescent complementation	DFSA, 721
(BiFC), 165–166	DHA. See Docosahexaenoic acid
BXA. See Baloxavir acid	Diabetes, influenza susceptibility and severity, 251, 288
	Diridavumab. See CR6261
С	DMS. See Deep mutational scanning
Canine influenza viruses	Docosahexaenoic acid (DHA), 281
avian influenza virus spillover, 488–489	DRiPs. See Defective ribosome products
H3N2, 485–487	DVG. See Defective virus genome
H3N8, 484–485	· ·
human influenza virus spillover, 487–488	
overview, 483	E
pathogenesis, 487	E1B-AP5, 554
CCL4, 552	EEA1, 145-146
CD25, 268	EMM. See Epitope masking model
CD55, 255, 324	Epidemiology, human influenza
CF. See Cystic fibrosis	avian influenza viruses
cGAS, 599	H5N1, 314, 317
Children. See Pediatric influenza	H5N6, 315
Chronic obstructive pulmonary disease	H7N4, 315
(COPD), 252, 288	H7N7, 315
CLIP-Seq, 167–168	H7N9, 315, 317
CLUH, nuclear export role, 130	H9N2, 315
CMTR1, cap snatching role, 120	H10N7, 317
CMV. See Cytomegalovirus	H10N8, 317
COPD. See Chronic obstructive pulmonary disease	control
CPSF30, 553	antiviral drugs, 307
CR6261	nonpharmaceutical interventions, 307–309
efficacy, 693	vaccination, 306–307
mechanism of action, 693	equine influenza viruses, 474–475
CR8020	incidence, 302–304
efficacy, 693–694	public health impact, 305–306
mechanism of action, 693	seasonality, 302
	severity profile, 304–305
CRISPR-Cas9, 124, 127, 156, 161–163	* *
CRM1, nuclear export role, 129–130, 144	transmission modeling, 301–302
CRTAM, 558	Epitope masking model (EMM), 587-589

Equine influenza viruses	Ferret model
clinical features in horses, 472–474	overview, 511–512
epidemiology, 474–475	pathogenicity, 518-519
evolution and antigenic drift, 468–471	pathogenicity of influenza virus, 513–515
historical perspective, 466–468	prospects for study, 519–521
overview, 465–466	transmission of influenza virus, 515–517
transmission between species, 471–472	FIM. See Fc receptor-mediated inhibition model
vaccination, 475–476	FluPol. See RNA polymerase, influenza virus
Estradiol, 283	FOXP3, 268
Evolution, influenza viruses	
antigenic drift, 211, 213	
avian influenza viruses	G
H5N6, 321	Gene correlation analysis, influenza host factor
H7N9	identification, 163
high-pathogenicity viruses, 319, 321	Genome, influenza virus
low-pathogenicity viruses, 319	influenza A virus
bat influenza A viruses, 498–500	packaging
cross-species transmission and evolution,	models, 103
205–207	prospects for study, 107-108
equine influenza viruses, 468–471	ribonucleoprotein organization within
genetic reassortment	virion, 103–105
avian influenza A virus, 207–208	RNA-RNA interactions, 105-107
human influenza viruses, 208, 210	segment-specific packaging, 102-103
overview, 207	structure, 2, 79–80, 100–102
swine influenza viruses, 208	replication
	host factors
H5N1 in Egypt, 355–358	ANP32, 123–126
H7N9 in China, 368–370	Hsp90, 121–122
intrahost evolution, 213–214	MCM, 121
metagenomic studies, 202–204	nonprotein host factors, 126–127
molecular epidemiology, 210–213	UAP56, 121–123
origins, 201–202	overview, 120–121
phylodynamic patterns, 210–212	RNA polymerase, influenza virus, 6–7
swine influenza A virus sustained lineages	GOT2, 126
1A, 445	Gut microbiota
1B, 445–446	animal studies of influenza transmission, 194–195
1C, 446	disruption and influenza infection risk, 252
H3, 446–447	distraption and infractiza infection risk, 252
timescale, 204–205	
	Н
	H1N1
F	live attenuated influenza vaccine effectiveness,
Favipiravir	665-668
efficacy, 684, 708–709	pandemics, 334. See also Spanish influenza
mechanism of action, 708	pandemic
overview, 683-684, 708	reassortment, 210
resistance, 684, 709	transmission, 186, 189-190, 193
safety, 684	vaccine effectiveness, 650
Fc receptor-mediated inhibition model (FIM),	H2N2
587-589	B-cell immune response, 563
Feline influenza viruses	evolution, 446–447
avian influenza virus spillover, 488–489	pandemic, 230–231, 332, 334
human influenza virus spillover, 487–488	reassortment, 208
overview, 483	transmission, 186–187, 189–190, 193–194, 207

H3N2, vaccine effectiveness, 650–651	antigenic sites, 404–406
H3N8	clinical features, 395
cross-species transmission, 207	epidemiology, 315
transmission of equine virus, 471-472	hemagglutinin features, 403, 407
H5N1	lineage
antigenic drift, 213	Americas, 387, 389, 393
Egypt	Eurasian lineage, 393–395
biological properties, 358	overview, 387, 390–392
control	natural history, 385, 387
active surveillance, 361	origins, 202
biosecurity enhancement, 359–361	overview, 385
culling of infected poultry, 361	pathology, 395–396
vaccination, 360	prospects for study, 407–408
emergence, 354	public health risks, 395
epidemiology, 354–355	reassortment, 208
evolution, 355–358	transmission, 396–397, 403
overview, 353–354	tropism determinants, 398–400
prospects for study, 362	vaccination, 407
reassortment, 359	virulence determinants, 401–402
zoonotic infections, 358–359	H9N3, species distribution, 386
epidemiology, 314, 317	H9N4, species distribution, 386
reassortment, 208	H9N5, species distribution, 386
spillover into dogs and cats, 488–489	H9N6, species distribution, 386
transmission, 189–190	H9N7, species distribution, 386
H5N6	H9N8, species distribution, 386
epidemiology, 315	H10N7, 317
evolution, 321	H10N8, 317
H5N8, emergence in Egypt, 359	H17N10, 202, 407
H7N2, cat outbreak, 489-490	H18N11
H7N4, epidemiology, 315	control, 407
H7N7	origins, 202
epidemiology, 315	replication, 501–504
transmission, 194	zoonotic risk, 505–506
H7N9	HA. See Hemagglutinin
antigenic drift, 213	Hemagglutinin (HA)
China	antibodies
adaptation, 370	broadly reactive antibodies, 62–64
antigenicity, 375–376	hemagglutinin receptor-binding site, 61–62
control, 376–377	stem domain, 59–61
drug resistance, 375	antigenic drift, 211, 582
emergence and evolution, 368–370	antigenicity, 46–47, 58–59
hemagglutinin receptor binding, 372–374	avian influenza virus features in human infection,
overview, 367–368	318–319
pathogenesis, 370–372	B-cell antigens, 561
prospects for study, 377	bat influenza A viruses MHC class II molecules,
transmission, 374–375	500-501
	classification, 53, 113-114
epidemiology, 315, 317	H5N1 prime and boost vaccination antibody
evolution	responses, 590
high-pathogenicity viruses, 319, 321	H7N9 receptor binding, 372-374
low-pathogenicity viruses, 319	H9N2 features, 403, 407
reassortment, 208	high-pathogenicity avian influenza viruses and
transmission, 189	genetic lineages associated with
H9N2	outbreaks, 428-435

humoral immune response modeling to	affinity purification mass spectrometry,
hemagglutinin head and stem regions,	166-167
586-589	bimolecular fluorescent complementation,
immune evasion, 58-59	165-166
membrane fusion	CLIP-Seq, 167–168
conformational changes at low pH, 45-46, 58	CRISPR-Cas, 161-163
overview, 56–58	deep mutational scanning, 168
priming by precursor cleavage, 45, 57	ectopic overexpression, 163
neuraminidase interplay, 724–725	expression profiling, 163–164
receptor binding	gene correlation analysis, 163
affinity and specificity, 40–45, 54–56	knockout, 161–162
specificity by type	overview, 157, 159
overview, 337	RIP-Seq, 167–168
H1, 337	RNA interference, 159–161
H2, 338–339	single-nucleotide polymorphism analysis, 164
H3, 338–339	yeast two-hybrid screens, 164
H4, 339	Hsp90, 121–122
H5, 339	Human immunodeficiency virus (HIV), 250
H6, 339–340	riuman inimunodenciency virus (riiv), 230
H7, 340	
structure	I
comparison of structures from different	IAV. See Influenza A virus
techniques, 37	IFITM, 601
fusion subdomain F, 35, 37	IFITM3, 164
group-specific features	IFITM3, 254–255, 324
comparison of groups, 37–40	IKK, 553
rotation of R and E subdomains relative to	IL-1, 552–553
F subdomain, 40	IL-6, 552
H1 hemagglutinin, 36	IL-8, 552
H3 hemagglutinin, 36	IL28B, 254
membrane anchor subdomain M, 37	Immune plasma, efficacy, 691-692
overview, 33–35	Immune response, influenza virus
vestigial esterase subdomain E, 35	B cells, 561–564
swine influenza A virus phylogenetic lineages,	innate immunity
448-451	cGAS, 599
therapeutic targeting with antivirals, 688-690,	escape, 602
692-693	IFITM, 601
vaccine	interferon response, 598–599
antigens, 632–633	ISG15, 599–600
targeting, 64	Mx1, 600
HIV. See Human immunodeficiency virus	OASL, 600–601
HOBIT, 558	overview, 10, 552, 595–597
Host factor identification, influenza virus	pathogenesis, 552
considerations in studies	PKR, 600
controls, 158	prospects for study, 604–605
host model system, 159	RIG-I, 596, 598
influenza virus strain, 158–159	STING, 599
proviral versus antiviral activity, 158	Toll-like receptors, 596, 598
replication cycle stage, 158	TRIMs, 601–602
type of host:virus interaction, 156, 158	virus regulation
importance of study, 155–156	M2, 604
prospects for study, 168–169	
techniques for study	NS1, 552–554, 602–603 PA-X, 554, 603–604
LCCHIHOUES TOT SUIGV	$\Gamma \Delta = \Delta = 0.024$

Immune response, influenza virus (Contiuned)	specificity, 566
PB1-F2, 555, 604	Immunization. See Vaccination
PB2, 556	IMPα, 117–118
RNA polymerase, 603	Inactivated influenza vaccine. See Vaccination
pediatric influenza, 268–270	Incomplete virus genome (IVG), transmission,
preexisting immunity	187-189
high levels in adults, 582–583	Influenza A virus (IAV)
importance, 581–582	bat viruses. See Bat influenza A viruses
vaccination studies	emerging HxNy viruses
boosting of response to different epitopes,	hosts, 335–337
584-586	matching pattern of gene segments, 344-346
H5N1 prime and boost vaccination	neuramidinase
antibody responses, 590	drug resistance profile, 342-344
humoral immune response modeling to	enzymatic activity, 340-341
hemagglutinin head and stem regions,	inhibitor binding specificity, 341–342
586-589	overview, 331–332
memory recall responses after vaccination,	pandemic viruses, 332-333-334
584-585	prospects for study, 346
preexisting antibody titers and magnitude	receptor binding specificity of hemagglutinin
of response, 584	type
prospects for study, 590–592	H1, 337
systems biological analysis of vaccination	H2, 338–339
immune response	H3, 338–339
goals, 614	H4, 339
historical perspective, 615–616	H5, 339
limitations and challenges, 623–624	H6, 339–340
proof-of-concept studies, 614–615	H7, 340
TLR5, 615–618	overview, 337
vaccine development applications	genome
adjuvant mechanism of action studies,	packaging
619–620	models, 103
antibody response signatures and	prospects for study, 107–108
persistence, 620–622	ribonucleoprotein organization within
antigen discovery, 622–623	virion, 103–105
protection mechanisms in challenge	RNA-RNA interactions, 105-107
studies, 622	segment-specific packaging, 102-103
signatures of vaccine-induced	structure, 2, 79–80, 100–102
immunogenicity and protection,	proteome
618–619	accessory proteome, 83–93
T cells	core proteome, 79–83
CD4 T cells	prospects for study, 93–94
abundance and specificity of influenza-	swine viruses. See Swine influenza A viruses
specific cells, 558–559	synthetic virus. See Synthetic virology
÷	Innate immunity. See Immune response,
cytolytic cells, 558 follicular helper cells, 557–558	influenza virus
	Interferon
identification of cell subsets in protective	influenza response, 598–599
immunity, 559–561	
protective immunity, 556–557	systems biological analysis of vaccination
CD8 T cells	immune response, 615
aging effects, 566–567	Intravenous immune globulin (IVIG), efficacy, 692
effector mechanisms, 566	IRF3, 553, 598
overview, 564–565	IRF7, 598
protective immunity, 565	IRF9, 253

18G15, 599-600	N
IVG. See Incomplete virus genome	NA. See Neuraminidase
IVIG. See Intravenous immune globulin	NA43, influenza A virus function, 88
	NEP
	influenza A virus function, 82
J	nuclear export, 129
	Neuraminidase (NA)
JNK, 144–146, 553	emerging HxNy viruses
	drug resistance profile, 342–344
	inhibitor binding specificity, 341–342
L	enzymatic activity, 340–341, 717–718
Laninamivir	green fluorescent protein fusion, 179
efficacy, 687-688	hemagglutinin interplay, 724–725
mechanism of action, 720	influenza type distribution, 53
overview, 687	swine influenza A viruses genetic lineages, 444
resistance, 688	therapeutic targeting, 685–688, 717–728
safety, 688	vaccine antigens, 633
LASAG, 142	NF-кВ. See Nuclear factor-кВ
LFA-1, 564	1918 pandemic. See Spanish influenza pandemic
LGALS1, 324	Nitazoxanide (NTZ)
LGP2, 598	efficacy, 690
Live attenuated influenza vaccine. See Vaccination	overview, 689–690
Live attenuated infraenza vaccine. See vaccination	resistance, 690
	•
	safety, 690
M	NLRP3, 553, 555, 596, 617 NP
M1	amino-terminally extended isoform, 88
influenza A virus function, 82	· · · · · · · · · · · · · · · · · · ·
nuclear export, 129	influenza A virus function, 81
M2	structure, 3
influenza A virus function, 82, 114	vaccine antigens, 634
innate immunity regulation, 604	NS1
vaccine antigens, 633	amino-terminally truncated isoforms, 89, 91
M42, influenza A virus function, 88–89	evolution, 554–555
Malnutrition, severe influenza risks, 282-283	influenza A virus function, 82
Mass spectrometry (MS), affinity purification	innate immunity regulation, 552–554, 602–603
mass spectrometry, 166-167	NS3, influenza A virus function, 91–92
MAVS, 556	NTZ. See Nitazoxanide
MCM, 121	Nuclear factor-κB (NF-κB), 141–142, 553, 598
MCP-1, 552	Nuclear import. See Viral ribonucleoprotein
MDA5, 598	NXF1, 120, 554
MEDI8852	NXT1, 120
efficacy, 694	
mechanism of action, 693	
Messenger RNA (mRNA), nuclear export, 120	0
MHAA4549A	OAS. See Original antigenic sin
efficacy, 694	OASL, 600-601
mechanism of action, 693	Obesity, influenza infection risk, 251, 279-282
Mini viral RNA (mvRNA), 8-10	Original antigenic sin (OAS)
MIP-1β, 552	aging and severe disease susceptibility, 287
mRNA. See Messenger RNA	costs and benefits, 537
MS. See Mass spectrometry	immunological basis, 544-546
mvRNA. See Mini viral RNA	mechanisms, 536–537
Mx1, 600	misconceptions
	<u>-</u>

Original antigenic sin (OAS) (Contiuned)	prospects for study, 270-272
constant feature of influenza virus immunity,	transmission, 266–267
528, 533–535	vaccination
inevitability, 535–536	mechanisms
limited to viruses within same subtype, 534	inactivated vaccine, 270
nonfunctional antibody generation, 534-535	live attenuated vaccine, 270
restricted to antiviral immunity, 536–537	prevention, 267–268
overview, 527–528, 543–544, 561–552	Peramivir, 720
pediatric influenza effects, 544	PI3K, influenza modulation, 146–149
prospects for study, 537-538, 547-548	Pimodivir
recall antibody studies after infection	efficacy, 682–683, 710
animal models, 531–532	mechanism of action, 709-710
humans, 529–530, 583–584	overview, 682, 709
vaccination effects in young children, 546-547	resistance, 683, 710
Oseltamivir	safety, 683
antibiotic combination therapy, 695–696	PIsK, 553
derivatives, 720–721	PKR, 600
H7N9 resistance, 375	PP7CP, 178
mechanism of action, 114, 719–720	Pregnancy, influenza susceptibility
neuramidinase resistance, 342	and severity, 251, 284-285
resistance, 722	Progesterone, 283
D.	Q
P	
p38 mitogen-activated protein kinase, influenza	Quarantine, 308
virus activation and therapeutic	
targeting, 144–146	R
PA	Rab11A, 130–131
IMPα-independent nuclear import, 118	RAE1, 554
influenza A virus function, 81	Raf/MEK/ERK
PAFR, 282	classical MAPK cascade, 142–143
PA-N155, influenza A virus function, 86–87	influenza virus activation and therapeutic
PA-N182, influenza A virus function, 86–87	targeting, 143–144
PA-X influenza A virus function, 87–88	nuclear export role, 128–129
innate immunity regulation, 554–555, 603–604	RAF1, 121
PB1	RAF2. See UAP56
IMPα-independent nuclear import, 118	Rapamycin, efficacy against influenza, 697
influenza A virus function, 81, 114	Reassortment. See Avian influenza viruses;
PB1-F2	Evolution, influenza viruses
evolution, 555–556	RED, 164
influenza A virus function, 84, 86	Reverse genetics
innate immunity regulation, 555, 604	historical perspective of influenza studies
PB1-N40, influenza A virus function, 86	alternative approaches, 224–225
PB2	bidirectional reverse genetics systems, 224
influenza A virus function, 81, 114	ribonucleoprotein complex isolation, 222
innate immunity regulations, 556	ribozyme generation of viral RNA 3' ends, 224
phylogeny, 202	RNA polymerase I
PB2-S1, influenza A virus function, 84	features, 222–223
Pediatric influenza	species specificity of promoter, 225–226
clinical presentation, 264-266	virus generation from cDNA, 223-224
immune response, 268–270	non-influenza A viruses, 226
original antigenic sin, 544	overview, 221
overview, 263–264	prospects, 226

RIG-I, 10, 84, 114–115, 139–141, 148, 168,	SNP. See Single-nucleotide polymorphism
553, 555, 596, 598	SOCS1, 280
rIPK, 146	SOCS3, 280
RIPLET, 598	Spanish influenza pandemic
RIP-Seq, 167–168	global impact, 229–231
RNA polymerase I	lessons learned, 238-239
features in reverse genetics, 222-223	origin, 231–233
influenza virus generation from cDNA, 223–224	pathogenicity, 233-238
species specificity of promoter, 225–226	recovery, 231
RNA polymerase II, role in virus transcription,	virus evolution, 204–205, 332
118-120	STAT1, 145
RNA polymerase, influenza virus (FluPol)	STAT4, 145
conformational flexibility, 23-25	STING, 599
dimerization, 23–25	Susceptibility, influenza A virus infection
host factor interactions and adaptive mutations, $7-8$	immune correlates of protection and severity, 255–256
host-specific mutations in double domain, 21	initial exposure, 246
innate immunity regulation, 603	occupational risks, 248
mechanism of RNA synthesis	overview, 245-246
active site, 25–26	protecting high-risk populations, 289-290
nucleotide addition cycle, 25-27	severe disease susceptibility factors
priming loop, 26, 28	age, 248-250, 285-287
overview, 15–17	bacterial coinfection, 252
promoter binding modes, 22-23	chronic obstructive pulmonary disease,
prospects for study, 29-30	252, 288
replication, 6–7	diabetes, 251, 288
RNA-binding sites, 4	genetic susceptibility
structure	CD55, 255
architecture, 3–4	IFITM3, 254-255
domains	IL28B, 254
cap-binding domain, 17–19	IRF9, 253
endonuclease, 19-20	overview, 252-253
PA-C, 21–22	TLR3, 253, 255
627-NLS double domain, 20–21	immunocompromised status, 250
overall structure, 16–17	microbiome disruption, 252
therapeutic targeting, 680–684, 707–713	obesity, 251, 279–282
transcription, 4–6, 28–29	pregnancy, 251, 284–285
RSK2, 144	sex differences, 250–251, 283–284
	vaccine history and preexisting immunity,
S	247-248
3	virus-intrinsic changes, 246–247
Seasonality, influenza, 302	svRNA. See Small viral RNA Swine influenza A viruses
SELP, 622	
Sex differences, influenza susceptibility and severity, 250–251, 283–284	candidate vaccine virus development and assessment, 454–459
Single-nucleotide polymorphism (SNP), analysis for	clinical aspects in pigs, 442, 445
influenza host factor identification, 164	current circulating diversity in swine,
Sirolimus, efficacy against influenza, 697	447, 449–450, 452
Small molecule–assisted shutoff (SMASh), 180–181	evolution of sustained lineages
Small viral RNA (svRNA), 8, 10	1A, 445
SMASh. See Small molecule—assisted shutoff	1B, 445–446
Smoking, influenza susceptibility and severity, 288	1C, 446
SMU1, 164	H3, 446-447

Swine influenza A viruses (Contiuned)	TND. See Test-negative design
hemagglutinin phylogenetic lineages,	TNPO1, 115
448-451	TRAIL, 142
human risks, 452-454	Transcription
neuraminidase genetic lineages, 444	RNA polymerase, influenza virus,
overview, 441–442	4-6, 28-29
phylogeny, 443	RNA polymerase II role in virus transcription
prospects for study, 458, 460	118-120
Synthetic virology	Transmission
applications, 182	animal models
circuit modules	age effects, 194-195
browser history module, 179-180	immune status studies, 194
genetic override module, 180	microbiome studies, 194-195
GPS module, 181	overview, 193
isolation, 178	route of transmission, 193-194
RNA interference module, 181	bottlenecks
tracking module, 178-179	influenza diversity, 186-187
influenza A virus circuitry, 176-178	quantification, 190-193
overview, 175–176	cross-species transmission and evolution,
Systems vaccinology. See Vaccination	205-207
	defective and incomplete virus particles, 187–189
Т	emerging influenza viruses, 189-190
Tamiflu. See Oseltamivir	equine influenza viruses, 471–472
TBK-1, 140	ferrets and influenza virus, 515-517
T cell, influenza immune response	H7N9 in China, 374–375
CD4 T cells	H9N2, 396–397, 403
abundance and specificity of influenza-	modeling, 301-302
specific cells, 558–559	overview, 185-186
cytolytic cells, 558	pediatric influenza, 266–267
follicular helper cells, 557–558	prospects for study, 195
identification of cell subsets in protective	TRIM14, 602
immunity, 559–561	TRIM22, 602
protective immunity, 556–557	TRIM25, 555, 598
CD8 T cells	TRIM28, 145
aging effects, 566–567	TRIM32, 602
effector mechanisms, 566	TRIM56, 601
overview, 564–565	Tuberculosis, influenza susceptibility
protective immunity, 565	and severity, 289
specificity, 566	
efficacy, 694–695	
mechanism of action, 693	U
TCN-032	UAP56, 121–123
	Umifenovir
Test-negative design (TND), 649–650, 664 Testosterone, 283	
	efficacy, 688–689
TLR3, 598	overview, 688
TLR3, 253, 255	resistance, 689
TLR4, 145	safety, 689
TLR5, systems biological analysis of vaccination	Vaccination
immune response, 615–618	antigen targets, 632–634
TLR7, 598	biological challenges, 631–632
TLR8, 598	effectiveness and efficacy
TMPRSS2, 324	end points, 648-649

host factors affecting	original antigenic sin effects in young
imprinting and cohort effects, 653	children, 546-547
repeated vaccinations, 651-653	pediatric influenza
inactivated influenza vaccines	mechanisms
adjuvanted vaccine, 654	inactivated vaccine, 270
cell culture-based vaccine, 655	live attenuated vaccine, 270
high-dose vaccine, 654-655	prevention, 267–268
recombinant vaccine, 655	preexisting immunity studies
observational studies, 648	boosting of response to different epitopes,
overview, 647-649	584-586
prospects for study, 655-656	H5N1 prime and boost vaccination antibody
randomized controlled trials, 648	responses, 590
relative effectiveness study	humoral immune response modeling to
challenges, 655	hemagglutinin head and stem regions
test-negative design, 649-650	586-589
vaccine effectiveness by influenza type	memory recall responses after vaccination,
H1N1, 650	584-585
H3N2, 650–651	preexisting antibody titers and magnitude
type B, 651	of response, 584
virus factors affecting	prospects for study, 590-592
egg-induced mutations, 651	swine influenza A virus candidate vaccine
strain, 651	virus development and assessment,
waning, 653-654	454-459
equine influenza viruses, 475–476	systems biological analysis of immune response
H5N1 in Egypt, 360	goals, 614
H7N9 in China, 376–377	historical perspective, 615-616
H9N2, 407	limitations and challenges, 623-624
hemagglutinin targeting, 64	proof-of-concept studies, 614–615
historical perspective, 629-631	TLR5, 615-618
infection susceptibility impact, 247-248	vaccine development applications
live attenuated influenza vaccine	adjuvant mechanism of action studies,
clinical experience	619-620
pandemic of 2009, 664	antibody response signatures and
randomized studies, 665	persistence, 620–622
U.S. influenza VE network,	antigen discovery, 622-623
664-665	protection mechanisms in challenge
historical perspective, 662-664	studies, 622
overview, 661–662	signatures of vaccine-induced
pandemic vaccines, 670-671	immunogenicity and protection,
prospects, 671–672	618-619
protection correlates, 669-670	
Russian backbone vaccine, 668-669	
vaccine effectiveness against H1N1,	V
665-668	VDAC1, 555
monitoring, 306–307	Viral ribonucleoprotein (vRNP)
next-generation vaccines	architecture, 3, 100–102
high-performance seasonal vaccines, 634	nuclear export
pandemic	CLUH role, 130
preparedness, 637	CRM1 role, 129–130
response, 637–638	overview, 127
prospects, 639–640	plasma membrane transport, 130–131
supraseasonal vaccines, 634–637	Raf/MEK/ERK signaling, 128–129
universal vaccines, 638–639	nuclear import

Viral ribonucleoprotein (vRNP) (Contiuned) Υ classical pathway, 116-117 Yeast two-hybrid screens, 164 IMPα-independent nuclear import, 118 noncanonical roles of α -importins, 117–118 overview, 115 Z precursor steps, 115-116 Zanamivir organization within virion, 103-105 VIS410 efficacy, 686 efficacy, 695 overview, 685-686, 719 mechanism of action, 693 resistance, 687, 722 vRNP. See Viral ribonucleoprotein safety, 686-687