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The set of methods discussed in this collection has emerged from the convergence of two
scientific fields—genetics and causal inference. In this introduction, we discuss relevant
aspects of each field and show how their convergence arises from the natural experiments
that genetics offer. We present introductory concepts useful to readers unfamiliar with ge-
netically informed methods for causal inference. We conclude that existing applications and
foreseeable developments should ensure that we rapidly reap the rewards of this relatively
new field, not only in terms of our understanding of humandisease and development, but also
in terms of tangible translational applications.

Identifying causal risk and protective factors
for human disease and development is a crit-

ical endeavor across social and biomedical sci-
ences. Examples of causal questions that can be
interrogated using themethods discussed in this
collection include the following: Does vitaminD
protect against multiple sclerosis (Mokry et al.
2015)? Does Selenium supplementation protect
against cancer (Kho et al. 2019)? Do elevated
inflammation biomarkers such as C-reactive
protein increase the risk of depression (Prins
et al. 2016)? Do high levels of circulating testos-
terone increase bone mineral density and de-
crease body fat (Mohammadi-Shemirani et al.
2020)? Doesmaternal smoking during pregnan-
cy lower birth weight or increase the risk of child
attention-deficit hyperactivity disorder (Thapar

et al. 2009)? Does higher education worsen my-
opia (Mountjoy et al. 2018)? Does victimization
worsen adolescentmental health (Singham et al.
2017)?Does a tuberculosis infection increase the
risk of lung adenocarcinoma (Wong et al. 2020)?
Or, as an example of particular interest at the
time of writing, can inflammatory biomarkers
such as IL-6 be targeted to decrease the risk of
severe outcomes following SARS-CoV-2 infec-
tion (Bovijn et al. 2020)?

These questions only begin to capture the
wide array of modifiable risk factors that can
be investigated, including dietary supplements,
biomarkers, lifestyles, social environments, or
infections. More elaborate causal questions can
also be asked by jointly modeling several risk
factors. For example, is high-density lipoprotein
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cholesterol (HDL-C) really “good cholesterol”
(i.e., does it independently protect against coro-
nary heart disease [CHD], even after accounting
for the effect of other lipoproteins) (Davey Smith
and Phillips 2020)? Or, what is the role of epi-
genetic markers (such as DNA methylation) in
mediating the effect of obesity on cardiometa-
bolic diseases (Mendelson et al. 2017)?

Answering those questions not only pro-
vides insights into the etiology of human disease
and development but can also directly inform
interventions. Conversely, inaccurate answers
can lead to costly research dead ends and adverse
public health consequences, such as the wide-
spread consumption of inefficient and poten-
tially iatrogenic supplements. Causal inference
methods can be implemented to help answer
those questions, by first providing evidence for
or against the existence of a causal effect and by
identifying its direction and estimating its mag-
nitude.

In the articles in the Cold Spring Harbor
Perspectives in Medicine subject collection
“Combining Human Genetics and Causal Infer-
ence to Understand Human Disease and Devel-
opment,” we focus on a subset of such methods
that use genetic data to strengthen causal infer-
ence in observational studies. We note that phi-
losophers and scientists have grappled with the
notion and definition of cause over centuries.
We do not aim to contribute to this debate. In-
stead, in this collection, we focus on causal in-
ference methods as tools to identify modifiable
factors that, when changed, should lead to a
change in the outcome of interest.

This collection has emerged from the con-
vergence of two scientific fields—genetics and
causal inference. We will discuss each in turn
before demonstrating how they have converged
to feed into genetically informed causal infer-
ence methods.

FROMMENDELIAN TOMOLECULAR GENES

Modern genetics can be traced back to Gregor
Mendel’s experimental work, published in 1866,
and the suggestion that discrete entities ran-
domly transmitted across generations can ex-
plain the inheritance of discrete phenotypic

(i.e., nongenetic) features, such as the color of
peas (Mendel 1993). The focus on complex con-
tinuous traits such as human height came with
the biometricians Francis Galton (Galton 1889)
and Karl Pearson (Pearson and Henrici 1896),
from the latter decades of the 19th to the start of
the 20th century. Rather than from breeding
experiments, within the context of human
traits, biometricians used observed trait associa-
tions between family members to derive the role
of genetic influences. Genetic influences were
quantified using the concept of correlation intro-
duced by Galton and formalized by Pearson.

The apparent paradox of discrete entities—
the genes—having to account not only for dis-
crete characteristics but also continuous traits
initially divided Mendel’s disciples and biome-
tricians. Several contributions early in the 20th
century contributed to the resolution of this de-
bate (see Yule 1902; Visscher 2013). In 1911,
Brownlee stated explicitly that “there is nothing
necessarily antagonistic between the evidence
advanced by the biometricians and the Mende-
lian theory” (Brownlee 1911). He showed that
discrete elements consistent with theMendelian
theory could result in anormal distribution, con-
cluding: “If the inheritance of stature depends
upon a Mendelian mechanism, then the distri-
bution of the population as regards heightwill be
that which is actually found, namely, a distribu-
tion closely represented by the normal curve”
(Brownlee 2013). In 1918, Ronald Fisher pro-
posed an extended model including environ-
mental effects in addition to many discrete ge-
netic variants, or “cumulative Mendelian
factors” (Fisher 1918). Fisher’s extended model
showedhow the resultingphenotypic varianceof
complex traits could be partitioned into genetic
and nongenetic components, laying the founda-
tions of the field of quantitative genetics. Quan-
titative genetics has developed considerably
since then by relying on the known genetic relat-
edness between relatives (e.g., twins) to better
understand the respective importance of genetic
and environmental factors and their interplay in
explaining individual differences. Such etiologi-
cal studies partition the variance of a single trait
or the covariance between traits into genetic,
shared, and nonshared environmental compo-
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nents (the nonshared component conflates ex-
ternal environmental influences but also mea-
surement error and a likely substantial compo-
nent due to variation explained by the intrinsic
stochasticity of molecular processes) (Davey
Smith 2011a; Plomin et al. 2013; Tikhodeyev
and Shcherbakova 2019; Jonsson et al. 2021).

Following the discovery of DNA as the sub-
strate for genes, followed by the uncovering of
the structure of DNA, the notion of “genes” has
evolved from “Mendelian genes”—abstract stat-
istical entities explaining inheritance—to incar-
nate sequences of DNA or “molecular genes.”
These discoveries sparked the quest to identify
molecular genes associated with diseases and
traits. Among methods used to this end, ge-
nome-wide association studies (GWAS) have
played a key role in the past 15 years. GWAS
test the association of millions of genetic vari-
ants, typically single-nucleotide polymorphisms
(SNPs), with a given trait. A vast array of down-
stream analyses can then be implemented to
identify the genetic variants causing the disease.
Analyses to identify causal variants in humans
have typically relied on statistical methods, for
example, testing which genetic variant stays the
most associated to the trait after accounting for
neighboring genetic variants (so-called “condi-
tional analysis”) (Yang et al. 2012). The advent
of genome editing methods so precise that they
can edit out and/or replace a few genetic variants
in vivo (Jinek et al. 2012) offers exciting oppor-
tunities to identify causal variants experimental-
ly. The downstream effects of changing a given
variant can be directly tested, consistent with the
aforementioned notion that a risk factor is caus-
al for an outcome when changing the risk factor
also changes the outcome. Recent methods in
the area hold considerable promise in uncover-
ing the true causal variants and genes leading to
diseases (Broekema et al. 2020).

Although the focus of the molecular era has
mainly been to identify causal genetic variants, it
has profoundly changed quantitative genetics
and our ability to study the genetic architecture
of traits. Genetic relatedness between distantly
related individuals can also be calculated based
on genome-wide markers. Similarly to family-
based studies, this can then be exploited to derive

the role of genetics in the variance and covari-
ance of traits. For example, SNP heritability is
the proportion of variance in a trait explained by
the additive effects of all measured SNPs (Yang
et al. 2011). Based on those measured SNPs, ad-
ditional methods can be implemented to esti-
mate the genetic correlation (e.g., how correlated
are the genetic factors underlying schizophrenia
and bipolar disorder?) (Bulik-Sullivan et al.
2015). In turn, models based on genetic correla-
tionmatrices formany traits canhelp us to better
understand the genetic architecture of families
of traits (e.g., how psychiatric traits cluster into
subsets that are closely genetically related)
(Grotzinger et al. 2019; Peyre et al. 2021). Such
advances that jointly model all measured SNPs
largely mimic what was possible with family-
based studies (i.e., estimating population-level
statistics like heritabilities or genetic correla-
tions). However, a decisive advantage of themo-
lecular era is that the information available at the
individual level is considerably richer. Instead of
knowing the place of an individual in a particular
pedigree (e.g., as a member of a twin pair), we
have access to millions of genetic variants for
that individual. The cumulative effect of genetic
variants can be thus captured by a polygenic
score for any given trait (i.e., an individual-level
score computed by summing risk variants
weighted by effect sizes derived from GWAS)
(International Schizophrenia Consortium et al.
2009; Dudbridge 2013). Polygenic scores can be
computed based on genome-wide data or a sub-
set of variants (e.g., genome-wide significant
variants). Current polygenic scores based on
GWAS for height and education predict 24%
and 11% of the variance in their respective phe-
notype (Lee et al. 2018; Yengo et al. 2018). Such
scores can then be used in (multivariate) models
to examine genetic influences on an array of
traits (Krapohl et al. 2016, 2017). As individu-
al-level variables, they can improve predictive
models of disease (e.g., cardiovascular disease
[Sun et al. 2021]) and may lead to clinical appli-
cations (Torkamani et al. 2018;Wrayet al. 2021).

Of note is that, despite often being labeled
“etiological,” investigations decomposing the
variance of traits into genetic and environmen-
tal components have little to do with the iden-
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tification of causal risk factors. This is because,
in any particular study, the variance explained
by genetics may largely depend on the distribu-
tion of environmental factors; conversely, the
variance explained by environmental factors
may depend on allele frequency in the study
population. The decomposition of variance is
therefore local to a study population and can
be entirely different from the true role of genet-
ics and the environment in explaining trait var-
iation for a given trait. Only with an assumption
of strict additivity (i.e., genetic effects are the
same across all environments and vice versa)
can study estimates reflect the respective etiolog-
ical role of genetic and environmental influ-
ences. As Lewontin put it, “In view of the terrible
mischief that has been done by confusing spa-
tiotemporally local analysis of variance with the
global analysis of cause, I suggest that we stop
the endless search for better methods of estimat-
ing useless quantities” (Lewontin 1974). As not-
ed later, however, “the local objection” is not
really an objection regarding causal interpreta-
tion, but rather regarding “the generalizability of
particular research findings,” which is not only a
problem for the analysis of variance but for any
supposedly causal analysis (Vreeke 2006). More
fundamental, however, is the realization that high
heritability estimatesmay simply reflect a restrict-
ed range of observed environmental conditions
in a given study. Changing environmental fac-
tors, for example, by intervention, can therefore
still shift the distribution of a trait despite low
estimates of environmental influences. Thus, her-
itability estimates say little about the malleability
of traits to change; they reflect what is, rather than
what could be. In addition, the concepts of her-
itable and environmental factors remain abstract
in the sense that they do not identify specific
modifiable factors that can be targeted for inter-
vention, as is essential in useful causal analysis.
This is true not only of classicmethods of analysis
of variance (e.g., twin heritability) referred to by
Lewontin but also of newermethods such as SNP
heritability, which estimate the variance ex-
plained by all commonSNPs, rather than identify
specific genetic variants.

Despite their importance, this collection
does not focus on methods aiming to elucidate

the genetic architecture of traits or identify caus-
al genetic variants. Instead, we focus on the use
of genetics as a powerful tool for establishing
causal relationships at the phenotypic level.
We aim to delineate how specific phenotypic
risk factors cause phenotypic outcomes. That
said, methods aiming to elucidate the genetic
architecture of traits or identify causal genetic
variants provide an essential background to the
methods presented in this collection.

CAUSAL INFERENCE IN OBSERVATIONAL
DATA

Randomized experiments and their implemen-
tation in clinical medicine as randomized con-
trolled trials (RCTs) have come to be considered
the gold standard for causal inference. The fun-
damental intuition is that if a treatment is allo-
cated randomly to different units (e.g., human
participants), then the treatment and control
groupwill only differ due to the treatment. Com-
paring treatment and control groups on anyout-
come of interest (e.g., disease) thus allows us to
establish the causal effect of the treatment and
estimate its magnitude. Establishing causation
has become so intertwined with experimenta-
tion and randomization that mentioning the
“C-word” within observational research has
been largely taboo in some fields (Hernán 2018;
Grosz et al. 2020). That said, as discussed below,
this taboo has been far from absolute with key
contributions to causal reflection and modeling
in observational settings in the second half of the
20th century. Still, authors are regularly com-
pelled by journal policies to change wording
from “effect” or “impact” to “association” or
“link,” thwarting the need for explicit and trans-
parent reporting of the aimandmethods of caus-
al inference studies (Hernán 2018). Such a rigid
application of themantra “correlation is not cau-
sation”has longcontributed tostalling thedebate
on causal inference in observational settings. Re-
ducingcausal inference toexperimentation isnot
tenable. First, RCTs have their own limitations,
forexample, theymaybenotbeethical or feasible
and itmay be difficult to generalize theirfindings
(Imai et al. 2008; Deaton and Cartwright 2018).
Yet, public health may require that a pragmatic,
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even if imperfect, consensus is reached on the
causal status of a given risk factor. In such cases,
simply computing observed correlations be-
tween variables is often unhelpful and investiga-
tions within an explicit causal inference frame-
work are required.

For example, no one now contests that
smoking cigarettes is a causal risk factor for
lung cancer. The causal status of smoking was
hotly debated and contested by some including
R.A. Fisher on the basis that confounding
(Box 1)—including genetic confounding—pre-
vented causal inference in observational data
(Fisher 1957, 1958). But such objections were
discarded based on converging observational
evidence. In particular, JeromeCornfield argued
that the strength of confounding from genetic
factors or other confounders would need to be
implausibly high to account for all of the ob-
served effect of smoking and cancer (Cornfield
et al. 1959), laying the foundations of what is
now known as sensitivity analysis. Concluding
the debate, the report of the Royal College of
Physicians in 1962 and the Surgeon General’s
Report in 1964 reached a consensus on the caus-
al status of smoking, paving the way for large-
scale prevention efforts (Evans 1962; Terry
1964). This conclusion was attained without
randomly allocating human participants to
smoking, which would have been unethical.

Since then, and despite the aforementioned
resistance, causal inference in observational
settings has been continuously refined and for-
malized with inputs from both statistics and ep-
idemiology. In 1965, Bill Cochran reflected on
how to plan observational studies when experi-
mentation is not possible “to elucidate cause-
and-effect relationships, or at least to investigate
the relationships between one set of specified
variables Xi and a second set Yi in a way that
suggests or appraises hypotheses about causa-
tion” (Cochran 1965). The choice of words is
enlightening here: inference in observational set-
tings may not provide definitive answers but can
shift the cursor on a continuum from correlation
tovirtual causal certainty. Also, in 1965, Bradford
Hill set out a list of viewpoints to consider when
appraising empirical evidence in favor of or
against a causal hypothesis, including temporal

relationships, dose–response relationships, and
plausibility (Hill 1965). Importantly, Hill’s list
was later misconstrued as a set of “criteria” to
establish causality, a mechanical terminology he
neither endorsed nor—it is clear—advocated
(Davey Smith 2019).

In his words: “Here, then, are nine different
viewpoints from all of which we should study
association before we cry causation. What I do
not believe—and this has been suggested—is
that we can usefully lay down some hard-and-
fast rules of evidence that must be obeyed before
we accept cause and effect. None of my nine
viewpoints can bring indisputable evidence for
or against the cause-and-effect hypothesis and
none can be required as a sine qua non. What
they can do, with greater or less strength, is to
help us tomake up ourminds on the fundamen-
tal question—is there any other way of explain-
ing the set of facts before us, is there any other
answer equally, or more likely than cause and
effect?” In the same text, Hill also criticized the
overreliance on tests of significance, suggesting
that in some cases, descriptive tables are so clear
that such tests do not add any value, or that “the
glitter” of “magic formulae” can divert our
attention from substantial study shortcomings.
He concluded, “Like fire, the χ2 test is an excel-
lent servant and a bad master.”

Hill’s informal approach to causal inference
was later criticized (see Rothman 2020) as none
of his viewpoints is sufficient or necessary to
infer causality, which he himself recognized
(on the tension between Hill’s criteria and stat-
istical formalization, see Rothman 2020 and
VanderWeele 2020).Themost influential formal
causal inference frameworks to date are arguably
Donald Rubin’s potential outcomes framework
and Judea Pearl’s structural models (Pearl 2009;
Imbens and Rubin 2015). Both frameworks are
very general, and most causal inference designs
or statistical methods in observational settings
(and even randomized trials) can be subsumed
under these frameworks. Both formalize as-
sumptions under which causal estimates can be
attainable from observational data. Exchange-
ability is a fundamental notion in both frame-
works and is achieved when exposed and non-
exposed groups are balanced on all confounders,
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BOX 1. CAUSAL DIAGRAMS

Directed acyclic graphs (DAGs) can be used to encode causal models and assumptions. (i) The
directed arrow represents a causal effect of A on B. (ii) The directed path goes from A to C via B. B
is here amediator, in the sense that the causal effect of A on C is happening indirectly via B. In DAGs,
absent arrows are as important as represented arrows. In ii, for example,we assume that all the effect of
A on C is mediated by B (i.e., there is no additional arrow directly from A to C or via another variable
than B). (iii) C independently causes A and B. C is therefore a confounder of the association betweenA
and B. The path between A and B via C is called a “backdoor” path. Such a backdoor path creates an
observed association between A and B even in the absence of a causal effect, which is represented by
the absence of a directed arrow between A and B. This constitutes a fundamental challenge in
epidemiology as observed associations between two variables cannot be assumed to stem from a
causal relationship between those twovariables. If C has been observed and perfectlymeasured, then
statistically adjusting for C will remove confounding and enable the estimation of the causal effect
between A and B, here a null effect.

Directions of arrows matter in DAGs. For example, if the arrow between A and C is reversed in iii
then C becomes a mediator rather than a confounder. (iv) C is a collider as both arrows from A and B
“collide” on C. In this situation, the path is blocked by C. As such, and contrary to the confounder
situation, there is no observed association between A and B. However, if C is adjusted for, this may
create a spurious association between A and B. This collider bias is another key challenge in epide-
miology. If C is a collider but mistakenly identified as a confounder, the adjusted association may be
further from the causal effect than the unadjusted association. Collider bias can also generate bias in
many study settings. For example, if two independent factors (A and B) cause hospitalization (C), then,
in a study restricted to hospitalized patients, A and B will generally be associated. This is because the
stratification (i.e., focusing only on hospitalized rather than hospitalized and nonhospitalized people)
is a form of adjustment.

(v) C is a confounderof X andYand should therefore be adjusted for to retrieve the causal effect of X
on Y. However, C is also a collider of A and B. Adjusting for C thus creates a spurious association
betweenA and B,which introduces a backdoor path fromX to Y via A andB. The induced association
upon confounder adjustment in this context has been referred to as “Mbias.” In addition to adjusting
for C, it is thus necessary to adjust for A and/or B to further block the newly created path. Importantly,
in theory, if the model DAG corresponds to the true model, finding a sufficient set of confounders,
here C and A (or B) for example, is sufficient to retrieve the causal effect of X and Y. In practice,
however, we do not know the underlying causal model and the variables are not measured without
error. This is a major impediment for causal inference based only on statistical adjustment, given the
nature of epidemiological data where unclear underlying models, unmeasured confounders, and
measurement error are the norm. In this collection, we present a number of methods that (partly)
adjust by design for unobserved confounders (e.g., the twin design).

The DAG (vi) encodes the instrumental variable design. Z is the instrument, which is used in an
“instrumental” fashion to estimate the causal effect of X on Y. Note that the DAG encodes three
assumptions of the instrumental variable approach that are necessary for Z to be a valid instrument,
enabling the inference that X causes Y. First, Z needs to be (robustly) associated with X (blue arrow),
which is called the relevance assumption (i.e., Z needs to be relevant to assess the effect of X). The
second assumption is exchangeability and is encoded by the absence of a common cause of Z and
Y. Exchangeability is key to understand why X enables us to make causal inference regarding X to
Y. To illustrate, if Z is binary and positively predicts X, then participants in group Z1 will have higher
levels of X than participants Z0. Although they differ on the level of X, participants Z0 and Z1 do not
differ on any other variables. Participants Z0 and Z1 are thus exchangeable and only differ on the
exposure X. If Z0 and Z1 have different outcomes (i.e., different levels of Y), we can conclude that X is
causally related to Y. This is similar to a randomized controlled trial (RCT) in the sense that Z plays the
role of the random assignment, which creates two groups with a different level of the variable
influenced by the treatment X but balanced on all other confounders. Third, Z needs to be associated
with Y only via its effect on X, which is called the exclusion restriction assumption. In other words,
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as occurs in an appropriately randomized trial.
Causal models within those frameworks can be
conveniently represented in formal diagrams, or
“directed acyclic graphs” (DAGs) (Box 1). Both
frameworks have a dedicated statistical notation
that is considerably more sophisticated than sta-
tistics like the t-test and chi-squared test referred
to by Hill.

The divide between empiricists like Hill and
advocates of the primacy of formal statistical
frameworks is unwarranted. First, the focus of
both sides is somewhat different. Hill’s address
was aimed at practitioners of occupational medi-
cine, with a strong focus on pragmatic decision
making. He concludes his address by a case for
action: although scientific knowledge is by nature
incomplete, acting on such knowledge should not
be endlessly deferred. Conversely, formalists fo-
cus on methodological advances aiming to pro-
vide the best answer to a causal question and es-
timates of causal effects under a given set of
assumptions.However, eventhemost sophisticat-
ed causal models in observational data can only
yield the right causal estimates when the specified
model is mostly correct (e.g., a sufficient set of
confounders have been assessed accurately; see
Box 1). Substantive prior knowledge is required
to specify appropriate models and assess their as-
sumptions, the plausibility of their findings, and
even to formulate relevant causal questions in the

first place. That is, causal inference cannot be re-
duced to algorithms (Krieger and Davey Smith
2018). In turn, however, formalized tools remove
some unwarranted arbitrariness in the decision-
making process regarding the causal status of risk
factors (Baiocchi 2020;VanderWeele 2020).As in
all empirical sciences, a constantdialoguemust be
maintained between theoretical frameworks, stat-
istical methods, and empirical evidence.

GENETICS AND PHENOTYPIC CAUSAL
INFERENCE

Genetics and causal inference have developed
largely in parallel but have converged along
two lines of inquiry. First, family-based designs
used in quantitative genetics to understand the
genetic and environmental architecture of traits
have also been used explicitly for causal infer-
ence. The idea of using twins that are genetically
identical to identify environmental causes of
diseases has been present since the 1950s,
with, for example, an analysis of smoking habits
in twins that concluded that a sufficient number
of discordant twins would help in establishing
the injurious effect of tobacco smoking (Friberg
et al. 1959), which was confirmed much later
(Kaprio and Koskenvuo 1989; Hjelmborg et al.
2017). The approach has then been systematized
on large twin samples, based on the principle

similarly to DAG ii, X fully mediates the association between Z and Y. When using a genetic instru-
ment, this is often called mediated pleiotropy (or vertical pleiotropy) as opposed to unmediated (or
horizontal) pleiotropy, which would be represented by a direct arrow from Z to Y. Importantly, even
when the DAG in vi fully holds, we do expect an observed association between Z and Y, which is
equal to the path from Z to Y via X.

(i)

(ii)

(iii)

(iv)

(v) A

A

A

A

A

B

YX

B

B

C

C

C

C

B

B

(vi) O,U

X

Z

Y
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that identical twins exposed to a risk factor can
be matched with their nonexposed cotwins
(Carlin et al. 2005; McGue et al. 2010), enhanc-
ing exchangeability. Other family-based designs
such as the in vitro fertilization design can be
used to account for genetic confounding by
comparing genetically related and genetically
unrelated parent–child pairs (Thapar et al.
2009). Many such methods and examples of ap-
plications are proposed in this collection.

Second, and more recently, measured genet-
ic variants associated with an exposure (e.g.,
cholesterol) have been used as instruments
(Box 1) to estimate the causal effect of that
exposure on relevant outcomes (e.g., cardiovas-
cular diseases). This approach was named Men-
delian randomization (MR), as it capitalizes on
the randomization of genetic material occurring
at conception to approximate exchangeability
and strengthen inference (Davey Smith andEbra-
him 2003). Interestingly, the idea that randomi-
zation at conception can help for controlled com-
parison had been grasped by Fisher. Indeed,
Fisher himself highlighted the connectedness be-
tween his central contribution to the statistics of
randomized experiments and Fisher’s early work
on the transmission of Mendelian factors (Davey
Smith 2011b). In his words,

And here I may mention a connection between
our two subjects which seem not to be altogether
accidental, namely that the factorial method of
experimentation, now of lively concern so far
afield as the psychologists, or the industrial
chemists, derives its structure and its name,
from the simultaneous inheritance of Mendelian
factors…. Genetics is indeed in a peculiarly fa-
voured condition in that Providence has shielded
the geneticist from many of the difficulties of a
reliably controlled comparison. The different ge-
notypes possible from the samemating have been
beautifully randomised by the meiotic process. A
more perfect control of conditions is scarcely
possible, than that of different genotypes appear-
ing in the same litter. (Fisher 1952)

As such, MR can be construed as a return to the
roots of causal inference; it has developed con-
siderably over the past decade with a flurry of
methods and applications reviewed in this col-
lection.

CONTRIBUTIONS

Lynch’s (2021) contribution discusses the
specific meaning of “cause” in genetics from a
philosophical perspective, building on the dis-
tinction between Mendelian and molecular
genes. The rest of this collection focuses more
pragmatically on describing genetically informed
methods for causal inference and their applica-
tions. Thapar and Rice (2021) present a range of
family-based designs for causal inference while
McAdams et al. (2021) focus on the twin design
and its extensions to larger pedigrees. Richmond
and Davey Smith (2021) turn to explaining the
fundamentals of MR and how genetic variants
and in particular SNPs can be used as instru-
ments for causal inference. Dudbridge (2021) fol-
lows up on the many extensions of MR jointly
modeling many SNPs as instruments. Sanderson
(2021) focuses on a special case of polygenic MR
using instruments associated with several expo-
sures to identify the independent or mediating
effects of such exposures on outcomes of interest.
Although the two major lines of research using
genetics for causal inference (i.e., family-based
and MR) have emerged and evolved indepen-
dently, Hwang et al. (2021) outline the major
opportunities arising from their recent integra-
tion. To some extent, family-basedMR returns to
Fisher’s insight of randomization of genotypes in
the same litter.

Note that we define phenotypes broadly as
including any individual characteristic other
than genotypes, which includes all omics other
than genomics. Methods covered in Porcu et al.
(2021) aim to query the potential of genetically
informedmethods in elucidating the role of me-
tabolomics as modifiable risk factors for dis-
eases. Such research questions build on large-
scale and growing data sets and Richardson
et al. (2021) cover much-needed computational
tools for causal inference.

Experimental and observational causal in-
ference methods have often been artificially
opposed. However, formal causal inference lan-
guages subsume both under the same theoretical
frameworks and notations and, in practice, they
can and should be complementary. Ference et al.
(2021) show howMRcan be used to improve the
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design of randomized control trials and Schmidt
et al. (2021) how genetics can be used to prior-
itize drug targets for trials.

Naturally, each of the methods covered in
this collection has its own challenges and limi-
tations. Munafò et al. (2021) conclude this
collection by reflecting on how triangulation of
evidence from multiple genetically informed
and nongenetic methods can help in further
strengthening causal inference.

TRENDS AND FUTURE DEVELOPMENTS

Following a more succinct attempt (Pingault
et al. 2018), this collection is the first to compre-
hensively cover genetically informed designs for
causal inference. New trends are already appar-
ent and should further develop in the near fu-
ture. We expect that the development of new
methods or the refinement of existing ones will
continue at a fast pace. At the theoretical level,
classical models such as the discordant twin
models should be rewritten using more formal
causal inference language to better understand
their underlying assumption and themeaning of
the resulting causal estimates (Petersen and
Lange 2020). Ever more robust MR estimators
are continuously being developed. In particular,
new methods leveraging genome-wide data for
causal inference are emerging and should be-
come a powerful viable complement to current
approaches that use a few dozen or hundreds of
genetic variants as instruments (Darrous et al.
2020; Morrison et al. 2020). Emerging methods
further discussed by Hwang et al. (2021) in this
collection, like MR within families, offer to ad-
dress some of the shortcomings of MR (Howe
et al. 2021). In addition, these approaches offer
new opportunities to further examine old ques-
tions such as what underlying processes explain
the transmission of risk across generations. In-
tergenerational causal inference can elucidate
whether parental risk factors have causal effects
on offspring outcomes or whether intergenera-
tional associations are better explained by genet-
ic and environmental confounding (Lawlor et al.
2017; Kong et al. 2018; Balbona et al. 2020).

So far, quantitative genetic methods have
largely relied on controlling for confounding

to strengthen inference, whereas methods using
molecular genetic data like MR have relied on
instrumental variable approaches (Box 1). New
methods can arise from crossing these bound-
aries. For example, genetic scores can be used as
instruments within the twin design (Minică
et al. 2018). Genetically informed methods can
also be combined with more classical methods
for causal inference. For example, MR can be
combined with negative control analyses (Sand-
erson et al. 2021). Genome-wide polygenic
scores can be used to implement genetically in-
formed sensitivity analyses (Pingault et al. 2018,
2021), building on the concept of sensitivity
analysis that emerged from the work of Jerome
Cornfield during the smoking–lung cancer con-
troversy.

The scope of application of methods pre-
sented in this collection becomes wider as new
data sets are made available. The emerging lit-
erature on the genetic architecture of COVID-
19, made possible by the data collected by the
COVID-19 Host Genetics Initiative offers a
good example of how methods presented in
this collection can make decisive contributions
to emerging questions. A genetic instrument for
IL-6R was found to be associated with a lower
risk of hospitalization for COVID-19, suggest-
ing the relevance of therapeutic inhibition of IL-
6R, which has now been confirmed in clinical
trials (Bovijn et al. 2020; The WHO Rapid Evi-
dence Appraisal for COVID-19 Therapies (RE-
ACT) Working Group et al. 2021). MR has also
been used to systematically scan hundreds of
druggable proteins to prioritize targets for
drug trials, for example, highlighting OAS1 as
a candidate for drug development (Gaziano
et al. 2021; Zhou et al. 2021). Additional studies
point toward host antiviral defense mechanisms
and mediators of inflammatory organ damage
as mechanisms underlying critical illness in
COVID-19 (Pairo-Castineira et al. 2021).

Although genetically informed causal infer-
ence is relatively recent, we expect that we will
start reaping rewards in the near future, that is,
not only in terms of our understanding of hu-
man disease and development but in terms of
tangible translational applications such as drug
development.
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